输入: [1.000 2.000 3.000]
输出: [ 3.464 -1.414 0.000]
重建: [1.000 2.000 3.000]
[0] cos(0.0*π/3)*sqrt(1/N)*1.0 + cos(0.0*π/3)*sqrt(1/N)*2.0 + cos(0.0*π/3)*sqrt(1/N)*3.0 = 3.464
[1] cos(0.5*π/3)*sqrt(2/N)*1.0 + cos(1.5*π/3)*sqrt(2/N)*2.0 + cos(2.5*π/3)*sqrt(2/N)*3.0 = -1.414
[2] cos(1.0*π/3)*sqrt(2/N)*1.0 + cos(3.0*π/3)*sqrt(2/N)*2.0 + cos(5.0*π/3)*sqrt(2/N)*3.0 = 0.000
恭喜,你(基本)明白DCT了!可M为啥是正交矩阵?!
[0,0] cos(0.0*π/3)*sqrt(1/N)*cos(0.0*π/3)*sqrt(1/N) + cos(0.0*π/3)*sqrt(1/N)*cos(0.0*π/3)*sqrt(1/N) + cos(0.0*π/3)*sqrt(1/N)*cos(0.0*π/3)*sqrt(1/N)
[0,1] cos(0.0*π/3)*sqrt(1/N)*cos(0.5*π/3)*sqrt(2/N) + cos(0.0*π/3)*sqrt(1/N)*cos(1.5*π/3)*sqrt(2/N) + cos(0.0*π/3)*sqrt(1/N)*cos(2.5*π/3)*sqrt(2/N)
[0,2] cos(0.0*π/3)*sqrt(1/N)*cos(1.0*π/3)*sqrt(2/N) + cos(0.0*π/3)*sqrt(1/N)*cos(3.0*π/3)*sqrt(2/N) + cos(0.0*π/3)*sqrt(1/N)*cos(5.0*π/3)*sqrt(2/N)
[1,0] cos(0.5*π/3)*sqrt(2/N)*cos(0.0*π/3)*sqrt(1/N) + cos(1.5*π/3)*sqrt(2/N)*cos(0.0*π/3)*sqrt(1/N) + cos(2.5*π/3)*sqrt(2/N)*cos(0.0*π/3)*sqrt(1/N)
[1,1] cos(0.5*π/3)*sqrt(2/N)*cos(0.5*π/3)*sqrt(2/N) + cos(1.5*π/3)*sqrt(2/N)*cos(1.5*π/3)*sqrt(2/N) + cos(2.5*π/3)*sqrt(2/N)*cos(2.5*π/3)*sqrt(2/N)
[1,2] cos(0.5*π/3)*sqrt(2/N)*cos(1.0*π/3)*sqrt(2/N) + cos(1.5*π/3)*sqrt(2/N)*cos(3.0*π/3)*sqrt(2/N) + cos(2.5*π/3)*sqrt(2/N)*cos(5.0*π/3)*sqrt(2/N)
[2,0] cos(1.0*π/3)*sqrt(2/N)*cos(0.0*π/3)*sqrt(1/N) + cos(3.0*π/3)*sqrt(2/N)*cos(0.0*π/3)*sqrt(1/N) + cos(5.0*π/3)*sqrt(2/N)*cos(0.0*π/3)*sqrt(1/N)
[2,1] cos(1.0*π/3)*sqrt(2/N)*cos(0.5*π/3)*sqrt(2/N) + cos(3.0*π/3)*sqrt(2/N)*cos(1.5*π/3)*sqrt(2/N) + cos(5.0*π/3)*sqrt(2/N)*cos(2.5*π/3)*sqrt(2/N)
[2,2] cos(1.0*π/3)*sqrt(2/N)*cos(1.0*π/3)*sqrt(2/N) + cos(3.0*π/3)*sqrt(2/N)*cos(3.0*π/3)*sqrt(2/N) + cos(5.0*π/3)*sqrt(2/N)*cos(5.0*π/3)*sqrt(2/N)
如果用上复数(欧拉公式),就可以用等比数列求和公式了!!- from math import cos, sqrt, pi
- import numpy as np
- π = pi; N = 3
- m = None # DCT矩阵
- mt = None # IDCT矩阵,m的转置
- mc = None # "C"版本DCT矩阵
- ms = None # string版DCT矩阵
- ne = lambda a, b: not np.allclose(a, b, atol=1E-6)
- def generate_dct_matrices():
- global m; global mt; global mc; global ms
- m = np.zeros((N, N))
- # [[0]*3]*3不对。[0]*3得[0,0,0],再*3复制引用而非创建独立副本。修改任意一行会影响所有行;debug 1小时
- mc = [[0] * N for _ in range(N)]
- ms = [[0] * N for _ in range(N)]
- for k in range(N):
- for n in range(N):
- mc[k][n] = m[k,n] = cos((n + 0.5) * k * pi / N)
- ms[k][n] = f'cos({(n+0.5)*k}*π/{N})'
- m[0,:] *= sqrt(1/N)
- for n in range(N):
- mc[0][n] *= sqrt(1/N)
- ms[0][n] += f'*sqrt(1/N)'
- m[1:,:] *= sqrt(2/N)
- for k in range(1,N):
- for n in range(N):
- mc[k][n] *= sqrt(2/N)
- ms[k][n] += f'*sqrt(2/N)'
- mt = m.T
- if ne(m, mc): raise ValueError()
- # x是一维数组,shape=(3,),np将其视为列向量(3,1)
- # 3x3 x 3x1 = 3x1 再摆平
- dct = lambda x: np.dot(m, x)
- idct = lambda y: np.dot(mt, y)
- # So, dct和idct其实是一个函数
- np.set_printoptions(
- suppress=True, # 禁用科学计数法
- precision=3, # 保留3位小数
- floatmode='fixed' # 固定小数位数
- )
- generate_dct_matrices()
- x = np.array([1.0, 2.0, 3.0]); print("输入:", x)
- y = dct(x); print("输出:", y)
- r = idct(y); print("重建:", r)
- ee = np.eye(m.shape[0])
- if ne(np.matmul(m, mt), ee): raise ValueError()
- print()
- y2 = [0] * N
- for i in range(N):
- for j in range(N): y2[i] += mc[i][j] * x[j]
- if ne(y, y2): raise ValueError()
- y2 = [0] * N
- for i in range(N):
- s = ''
- for j in range(N): s += f'{ms[i][j]}*{x[j]} + '
- s = s[:-3]
- y2[i] = eval(s)
- print(f'{[i]} {s} = {y2[i]:.3f}')
- if ne(y, y2): raise ValueError()
- print('')
- print('恭喜,你(基本)明白DCT了!可M为啥是正交矩阵?!')
- a = ms; b = np.array(ms).T; e = [[0] * N for _ in range(N)]
- for i in range(N):
- for j in range(N):
- s = ''
- for k in range(N): s += f'{a[i][k]}*{b[k][j]} + '
- s = s[:-3]
- print(f'[{i},{j}] {s}')
- e[i][j] = eval(s)
- if ne(e, ee): raise ValueError()
- print()
- print('如果用上复数(欧拉公式),就可以用等比数列求和公式了!!')
复制代码
来源:程序园用户自行投稿发布,如果侵权,请联系站长删除
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作! |