Java多线程与并发编程全解析
多线程编程是Java中最具挑战性的部分之一,它能够显著提升应用程序的性能和响应能力。本文将全面解析Java多线程与并发编程的核心概念、线程安全机制以及JUC工具类的使用,并提供完整的代码示例。
1. 线程的基本操作与生命周期
Java线程的生命周期包括新建(New)、就绪(Runnable)、运行(Running)、阻塞(Blocked)、等待(Waiting)、超时等待(Timed Waiting)和终止(Terminated)七个状态。- public class ThreadLifecycleExample {
- public static void main(String[] args) throws InterruptedException {
- // 创建线程
- Thread t = new Thread(() -> {
- System.out.println("线程状态1: " + Thread.currentThread().getState()); // RUNNABLE
-
- try {
- // 线程休眠,进入TIMED_WAITING状态
- Thread.sleep(1000);
- System.out.println("线程状态2: " + Thread.currentThread().getState());
-
- // 同步块,可能进入BLOCKED状态
- synchronized (ThreadLifecycleExample.class) {
- System.out.println("线程获得锁");
- }
-
- // 线程等待,进入WAITING状态
- synchronized (ThreadLifecycleExample.class) {
- ThreadLifecycleExample.class.wait();
- }
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- System.out.println("线程状态3: " + Thread.currentThread().getState()); // RUNNABLE
- });
-
- System.out.println("线程状态0: " + t.getState()); // NEW
-
- // 启动线程
- t.start();
- System.out.println("线程状态4: " + t.getState()); // RUNNABLE或TIMED_WAITING
-
- // 主线程休眠
- Thread.sleep(2000);
- System.out.println("线程状态5: " + t.getState()); // 可能是WAITING或TERMINATED
-
- // 唤醒等待的线程
- synchronized (ThreadLifecycleExample.class) {
- ThreadLifecycleExample.class.notify();
- }
-
- // 等待线程执行完毕
- t.join();
- System.out.println("线程状态6: " + t.getState()); // TERMINATED
- }
- }
复制代码 2. 线程安全与同步机制
线程安全问题主要由竞态条件(Race Condition)和内存可见性问题引起。Java提供了多种同步机制来解决这些问题。- import java.util.concurrent.locks.Lock;
- import java.util.concurrent.locks.ReentrantLock;
- public class ThreadSafetyExample {
- private static int counter = 0; // 共享资源
- private static final Object lock = new Object(); // 锁对象
- private static final Lock reentrantLock = new ReentrantLock(); // 可重入锁
-
- // 方式1: synchronized方法
- public static synchronized void incrementSynchronized() {
- counter++;
- }
-
- // 方式2: synchronized块
- public static void incrementBlock() {
- synchronized (lock) {
- counter++;
- }
- }
-
- // 方式3: ReentrantLock
- public static void incrementReentrantLock() {
- reentrantLock.lock();
- try {
- counter++;
- } finally {
- reentrantLock.unlock();
- }
- }
-
- // 方式4: 使用原子类
- private static java.util.concurrent.atomic.AtomicInteger atomicCounter = new java.util.concurrent.atomic.AtomicInteger(0);
- public static void incrementAtomic() {
- atomicCounter.incrementAndGet();
- }
-
- // 演示线程不安全的情况
- public static void incrementUnsafe() {
- counter++; // 非线程安全操作
- }
-
- public static void main(String[] args) throws InterruptedException {
- int threadCount = 1000;
- Thread[] threads = new Thread[threadCount];
-
- // 测试非线程安全的方法
- counter = 0;
- for (int i = 0; i < threadCount; i++) {
- threads[i] = new Thread(ThreadSafetyExample::incrementUnsafe);
- threads[i].start();
- }
- for (Thread t : threads) t.join();
- System.out.println("非线程安全计数器结果: " + counter); // 可能不等于1000
-
- // 测试原子类
- for (int i = 0; i < threadCount; i++) {
- threads[i] = new Thread(ThreadSafetyExample::incrementAtomic);
- threads[i].start();
- }
- for (Thread t : threads) t.join();
- System.out.println("原子类计数器结果: " + atomicCounter.get()); // 一定等于1000
- }
- }
复制代码 3. JUC包中的并发工具类
JUC(java.util.concurrent)包提供了丰富的并发工具类,极大简化了多线程编程。
3.1 Executor框架与线程池
Executor框架是管理线程的核心组件,线程池是其主要实现。- import java.util.concurrent.*;
- public class ExecutorFrameworkExample {
- public static void main(String[] args) throws InterruptedException {
- // 创建固定大小的线程池
- ExecutorService fixedThreadPool = Executors.newFixedThreadPool(3);
-
- // 创建缓存线程池
- ExecutorService cachedThreadPool = Executors.newCachedThreadPool();
-
- // 创建单线程执行器
- ExecutorService singleThreadExecutor = Executors.newSingleThreadExecutor();
-
- // 创建定时任务线程池
- ScheduledExecutorService scheduledExecutor = Executors.newScheduledThreadPool(2);
-
- // 提交任务到固定大小线程池
- for (int i = 0; i < 5; i++) {
- final int taskId = i;
- fixedThreadPool.submit(() -> {
- System.out.println("任务" + taskId + "在固定大小线程池执行");
- try {
- Thread.sleep(1000);
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- });
- }
-
- // 提交定时任务
- scheduledExecutor.schedule(() -> {
- System.out.println("延迟3秒执行的定时任务");
- }, 3, TimeUnit.SECONDS);
-
- // 提交周期性任务
- scheduledExecutor.scheduleAtFixedRate(() -> {
- System.out.println("每2秒执行一次的周期性任务");
- }, 1, 2, TimeUnit.SECONDS);
-
- // 关闭线程池
- fixedThreadPool.shutdown();
- cachedThreadPool.shutdown();
- singleThreadExecutor.shutdown();
-
- // 等待定时任务执行一段时间后关闭
- Thread.sleep(10000);
- scheduledExecutor.shutdown();
- }
- }
复制代码 3.2 CountDownLatch
CountDownLatch用于让一个或多个线程等待其他线程完成操作。- import java.util.concurrent.CountDownLatch;
- public class CountDownLatchExample {
- public static void main(String[] args) throws InterruptedException {
- int workerCount = 5;
- CountDownLatch latch = new CountDownLatch(workerCount);
-
- // 创建并启动工作线程
- for (int i = 0; i < workerCount; i++) {
- final int workerId = i;
- new Thread(() -> {
- System.out.println("工作线程" + workerId + "开始执行");
- try {
- // 模拟工作耗时
- Thread.sleep((long) (Math.random() * 5000));
- System.out.println("工作线程" + workerId + "完成任务");
- } catch (InterruptedException e) {
- e.printStackTrace();
- } finally {
- // 计数减1
- latch.countDown();
- }
- }).start();
- }
-
- // 主线程等待所有工作线程完成
- System.out.println("主线程等待所有工作线程完成...");
- latch.await();
- System.out.println("所有工作线程已完成,主线程继续执行");
- }
- }
复制代码 3.3 CyclicBarrier
CyclicBarrier用于多个线程互相等待,直到所有线程都到达某个屏障点。- import java.util.concurrent.BrokenBarrierException;
- import java.util.concurrent.CyclicBarrier;
- public class CyclicBarrierExample {
- public static void main(String[] args) {
- int threadCount = 3;
- // 创建CyclicBarrier,当3个线程都到达屏障时执行回调
- CyclicBarrier barrier = new CyclicBarrier(threadCount, () -> {
- System.out.println("所有线程都已到达屏障,继续执行");
- });
-
- // 创建并启动线程
- for (int i = 0; i < threadCount; i++) {
- final int threadId = i;
- new Thread(() -> {
- try {
- System.out.println("线程" + threadId + "正在执行前置任务");
- Thread.sleep((long) (Math.random() * 3000));
- System.out.println("线程" + threadId + "已到达屏障");
-
- // 等待其他线程到达屏障
- barrier.await();
-
- System.out.println("线程" + threadId + "继续执行后续任务");
- } catch (InterruptedException | BrokenBarrierException e) {
- e.printStackTrace();
- }
- }).start();
- }
- }
- }
复制代码 3.4 Semaphore
Semaphore用于控制同时访问某个资源的线程数量。- import java.util.concurrent.Semaphore;
- public class SemaphoreExample {
- private static final int MAX_PERMITS = 3; // 最多允许3个线程同时访问
- private static final Semaphore semaphore = new Semaphore(MAX_PERMITS);
-
- public static void main(String[] args) {
- // 创建10个线程,但最多只允许3个同时执行
- for (int i = 0; i < 10; i++) {
- final int threadId = i;
- new Thread(() -> {
- try {
- // 获取许可
- semaphore.acquire();
- System.out.println("线程" + threadId + "获取到许可,开始执行");
-
- // 模拟执行任务
- Thread.sleep((long) (Math.random() * 5000));
-
- System.out.println("线程" + threadId + "执行完毕,释放许可");
- // 释放许可
- semaphore.release();
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- }).start();
- }
- }
- }
复制代码 3.5 Exchanger
Exchanger用于两个线程之间交换数据。- import java.util.concurrent.Exchanger;
- public class ExchangerExample {
- public static void main(String[] args) {
- Exchanger<String> exchanger = new Exchanger<>();
-
- // 生产者线程
- new Thread(() -> {
- try {
- String dataToSend = "来自生产者的数据";
- System.out.println("生产者发送: " + dataToSend);
-
- // 交换数据
- String receivedData = exchanger.exchange(dataToSend);
- System.out.println("生产者收到: " + receivedData);
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- }).start();
-
- // 消费者线程
- new Thread(() -> {
- try {
- String dataToSend = "来自消费者的数据";
- System.out.println("消费者发送: " + dataToSend);
-
- // 交换数据
- String receivedData = exchanger.exchange(dataToSend);
- System.out.println("消费者收到: " + receivedData);
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- }).start();
- }
- }
复制代码 3.6 Future和CompletableFuture
Future用于异步获取计算结果,CompletableFuture是Future的增强版,提供了更丰富的异步编程功能。- import java.util.concurrent.*;
- public class FutureExample {
- public static void main(String[] args) throws InterruptedException, ExecutionException {
- ExecutorService executor = Executors.newSingleThreadExecutor();
-
- // 使用Future
- Future<Integer> future = executor.submit(() -> {
- // 模拟耗时计算
- Thread.sleep(2000);
- return 1 + 2;
- });
-
- // 主线程可以做其他事情
- System.out.println("主线程继续执行");
-
- // 获取异步计算结果
- if (future.isDone()) {
- System.out.println("计算已完成,结果: " + future.get());
- } else {
- System.out.println("计算未完成,等待...");
- System.out.println("计算结果: " + future.get()); // 阻塞直到计算完成
- }
-
- // 使用CompletableFuture
- CompletableFuture<Integer> completableFuture = CompletableFuture.supplyAsync(() -> {
- try {
- Thread.sleep(1000);
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- return 3 + 4;
- });
-
- // 链式调用,处理计算结果
- completableFuture
- .thenApply(result -> result * 2)
- .thenAccept(finalResult -> System.out.println("CompletableFuture最终结果: " + finalResult));
-
- // 多任务组合
- CompletableFuture<Integer> task1 = CompletableFuture.supplyAsync(() -> 10);
- CompletableFuture<Integer> task2 = CompletableFuture.supplyAsync(() -> 20);
-
- CompletableFuture<Void> allTasks = CompletableFuture.allOf(task1, task2);
-
- CompletableFuture<Integer> combinedResult = allTasks.thenApply(v -> {
- try {
- return task1.get() + task2.get();
- } catch (InterruptedException | ExecutionException e) {
- e.printStackTrace();
- return 0;
- }
- });
-
- System.out.println("组合任务结果: " + combinedResult.get());
-
- executor.shutdown();
- }
- }
复制代码 4. 线程池的原理与最佳实践
线程池通过复用线程减少线程创建和销毁的开销,提高性能。- import java.util.concurrent.*;
- public class ThreadPoolBestPractice {
- public static void main(String[] args) {
- // 自定义线程池配置
- ThreadPoolExecutor executor = new ThreadPoolExecutor(
- 5, // 核心线程数
- 10, // 最大线程数
- 60, // 线程空闲时间
- TimeUnit.SECONDS,
- new LinkedBlockingQueue<>(100), // 任务队列
- Executors.defaultThreadFactory(), // 线程工厂
- new ThreadPoolExecutor.CallerRunsPolicy() // 拒绝策略
- );
-
- // 提交任务
- for (int i = 0; i < 20; i++) {
- final int taskId = i;
- executor.submit(() -> {
- System.out.println("任务" + taskId + "由线程" + Thread.currentThread().getName() + "执行");
- try {
- Thread.sleep(1000);
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- });
- }
-
- // 监控线程池状态
- System.out.println("线程池状态: 核心线程数=" + executor.getCorePoolSize() +
- ", 最大线程数=" + executor.getMaximumPoolSize() +
- ", 当前线程数=" + executor.getPoolSize() +
- ", 活跃线程数=" + executor.getActiveCount() +
- ", 队列任务数=" + executor.getQueue().size());
-
- // 关闭线程池
- executor.shutdown(); // 不再接受新任务,但会执行完已提交的任务
-
- try {
- // 等待所有任务完成
- if (!executor.awaitTermination(5, TimeUnit.SECONDS)) {
- executor.shutdownNow(); // 强制关闭
- }
- } catch (InterruptedException e) {
- executor.shutdownNow();
- }
-
- System.out.println("线程池已关闭");
- }
- }
复制代码 5. 并发集合类
JUC包提供了多种线程安全的集合类,替代了传统的同步集合。- import java.util.*;
- import java.util.concurrent.*;
- public class ConcurrentCollectionExample {
- public static void main(String[] args) throws InterruptedException {
- // ConcurrentHashMap示例
- ConcurrentHashMap<String, Integer> concurrentMap = new ConcurrentHashMap<>();
-
- // 多个线程同时操作map
- Thread t1 = new Thread(() -> {
- for (int i = 0; i < 1000; i++) {
- concurrentMap.put("key" + i, i);
- }
- });
-
- Thread t2 = new Thread(() -> {
- for (int i = 0; i < 1000; i++) {
- concurrentMap.get("key" + i);
- }
- });
-
- t1.start();
- t2.start();
- t1.join();
- t2.join();
-
- System.out.println("ConcurrentHashMap大小: " + concurrentMap.size());
-
- // CopyOnWriteArrayList示例
- CopyOnWriteArrayList<String> list = new CopyOnWriteArrayList<>();
-
- Thread writer = new Thread(() -> {
- for (int i = 0; i < 100; i++) {
- list.add("element" + i);
- try {
- Thread.sleep(10);
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- }
- });
-
- Thread reader = new Thread(() -> {
- for (int i = 0; i < 20; i++) {
- System.out.println("List内容: " + list);
- try {
- Thread.sleep(100);
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- }
- });
-
- writer.start();
- reader.start();
- writer.join();
- reader.join();
-
- // ConcurrentLinkedQueue示例
- ConcurrentLinkedQueue<String> queue = new ConcurrentLinkedQueue<>();
-
- // 生产者线程
- Thread producer = new Thread(() -> {
- for (int i = 0; i < 10; i++) {
- queue.offer("item" + i);
- System.out.println("生产: " + "item" + i);
- try {
- Thread.sleep(200);
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- }
- });
-
- // 消费者线程
- Thread consumer = new Thread(() -> {
- while (true) {
- String item = queue.poll();
- if (item != null) {
- System.out.println("消费: " + item);
- } else if (producer.getState() == Thread.State.TERMINATED) {
- break; // 生产者已结束且队列为空
- }
- try {
- Thread.sleep(300);
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- }
- });
-
- producer.start();
- consumer.start();
- producer.join();
- consumer.join();
- }
- }
复制代码 6. 原子操作类
原子操作类基于CAS(Compare-And-Swap)实现,提供了高效的线程安全操作。- import java.util.concurrent.atomic.*;
- public class AtomicExample {
- public static void main(String[] args) throws InterruptedException {
- // AtomicInteger示例
- AtomicInteger atomicInteger = new AtomicInteger(0);
-
- // 多个线程同时递增
- Thread[] threads = new Thread[10];
- for (int i = 0; i < 10; i++) {
- threads[i] = new Thread(() -> {
- for (int j = 0; j < 1000; j++) {
- atomicInteger.incrementAndGet(); // 原子递增
- }
- });
- threads[i].start();
- }
-
- // 等待所有线程完成
- for (Thread t : threads) {
- t.join();
- }
-
- System.out.println("AtomicInteger最终值: " + atomicInteger.get()); // 应输出10000
-
- // AtomicReference示例
- AtomicReference<String> atomicReference = new AtomicReference<>("初始值");
-
- Thread t1 = new Thread(() -> {
- boolean updated = atomicReference.compareAndSet("初始值", "新值1");
- System.out.println("线程1更新结果: " + updated);
- });
-
- Thread t2 = new Thread(() -> {
- boolean updated = atomicReference.compareAndSet("初始值", "新值2");
- System.out.println("线程2更新结果: " + updated);
- });
-
- t1.start();
- t2.start();
- t1.join();
- t2.join();
-
- System.out.println("AtomicReference最终值: " + atomicReference.get());
-
- // LongAdder示例 - 高并发场景下比AtomicLong更高效
- LongAdder longAdder = new LongAdder();
-
- Thread[] adderThreads = new Thread[20];
- for (int i = 0; i < 20; i++) {
- adderThreads[i] = new Thread(() -> {
- for (int j = 0; j < 10000; j++) {
- longAdder.increment();
- }
- });
- adderThreads[i].start();
- }
-
- // 等待所有线程完成
- for (Thread t : adderThreads) {
- t.join();
- }
-
- System.out.println("LongAdder最终值: " + longAdder.sum());
- }
- }
复制代码 总结
Java多线程与并发编程是一个复杂但强大的领域,掌握这些核心概念和工具能够帮助你编写高效、安全且易于维护的多线程应用程序。
关键要点回顾:
- 线程的生命周期和基本操作
- 线程安全与同步机制(synchronized、ReentrantLock、原子类)
- JUC包中的并发工具类(Executor框架、CountDownLatch、CyclicBarrier等)
- 线程池的原理和最佳实践
- 并发集合类(ConcurrentHashMap、CopyOnWriteArrayList等)
- 原子操作类(AtomicInteger、LongAdder等)
通过合理使用这些工具和技术,可以有效解决多线程编程中的各种挑战,如竞态条件、内存可见性和线程管理等问题。
来源:程序园用户自行投稿发布,如果侵权,请联系站长删除
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作! |