AI 的浪潮席卷而来,各行各业都在积极探索 AI 的落地应用,无论是为了提升工作效率,还是为了在同事和领导面前展现技术实力,技术先行者们都跃跃欲试。在众多 AI 落地场景中,**知识库(Retrieval Augmented Generation, RAG)**因其技术成熟且能快速发挥 AI 价值的特点,成为企业优先考虑的方案。 什么是 RAG 知识库?
简单来说,RAG 知识库就是让 AI 针对用户提出的特定知识问题,给出准确的回答。其应用场景广泛,例如:
内部员工问答:解答企业规章制度、工作流程等问题。
智能客服:为客户提供产品或服务咨询。
产品文档助手:帮助用户快速查找产品使用说明、常见问题等。
...
市面上有许多关于如何搭建 RAG 知识库的技术方案,本文将不赘述具体实现细节。今天,我们重点讨论 RAG 实践中一个最令人头疼的问题:如何设计切片方案才能最大限度地提升问题回答的准确率? 我将免费分享一个我们团队在实践中探索出的高效技术设计方案,它几乎可以申请专利! 为什么传统知识库方案回答不够准确?
目前主流的知识库切片方案是将帮助文档切分成多个小块,然后将这些小块内容输入给 AI 进行学习,再由 AI 根据学习到的内容回答用户问题。这种方式存在诸多问题,影响回答的准确性:
版本管理难题:文档往往有多个版本。新旧版本用户可能期望 AI 基于不同版本的文档进行回答。如果所有版本都进行切片,不仅存储成本高,更容易导致 AI 混淆,给出不准确的答案。例如,老版本的客户需要老文档的答案,而新版本的客户则需要新文档的答案,一旦版本错误,回答的准确性就会大打折扣。