Evaluator Optimizer – The model analyzes its own responses and refines them through a structured process of self-evaluation.
Routing – This pattern enables intelligent routing of inputs to specialized handlers based on classification of the user request and context.
Orchestrator Workers – This pattern is a flexible approach for handling complex tasks that require dynamic task decomposition and specialized processing
Chaining – The pattern decomposes complex tasks into a sequence of steps, where each LLM call processes the output of the previous one.
Parallelization – The pattern is useful for scenarios requiring parallel execution of LLM calls with automated output aggregation.
学完这5种你会对对模型下的agent应用有一个完整认识
langchain4j vs springAI
生态不依赖Spring,需要单独集成SpringSpring官方,和Spring无缝集成诞生更早,中国团队,受 LangChain 启发稍晚,但是明显后来居上jdkv0.35.0 前的版本支持jdk8 ,后支持jdk17全版本jdk17功能没有mcp server, 官方建议使用quarkus-mcp-server早期落后langchain4j, 现在功能全面,并且生态活跃,开源贡献者众多易用性尚可,中文文档易用,api优雅最终公司不用 Spring AI 就选择它无脑选!大模型选型
自研(算法 c++ python 深度学习 机器学习 神经网络 视觉处理 952 211研究生 )AI算法岗位