概览
大型语言模型(LLM)是生成内容的强大工具。这些LLM的生成能力伴随着诸多优缺点。我们经常遇到的主要问题之一是生成内容的事实准确性。这些模型具有高度的幻觉倾向,有时会生成不存在或错误的内容。生成的内容往往极具说服力,看起来像是事实正确的有效信息。作为开发者,我们有责任确保系统完美运行并生成简洁的内容。本文将深入探讨在使用AWS Bedrock及其他AWS工具和技术开发应用时,降低幻觉现象的两种主要方法。
AWS OpenSearch:全托管的搜索与日志分析服务
AWS OpenSearch 是亚马逊云科技(AWS)推出的全托管开源搜索和日志分析服务,基于 Apache OpenSearch(原 Elasticsearch 的分支)构建,旨在简化搜索、日志分析、监控和可观察性等场景的实现。其核心优势在于高可用性、弹性扩展、低成本存储以及与 AWS 生态系统的深度集成。
Amazon Titan:AWS 基础模型系列
Amazon Titan 是 AWS 推出的高性能基础模型(Foundation Models, FMs)系列,涵盖 文本生成、图像生成、嵌入模型,专为生成式 AI 应用设计,支持企业构建定制化解决方案。
AWS Bedrock 是亚马逊云科技(AWS)推出的一项完全托管的生成式人工智能(AI)平台服务,旨在简化开发者和企业对基础模型(Foundation Models, FMs)的访问与使用。它通过统一的 API 提供来自多个领先 AI 公司(如 Anthropic、Cohere、Meta、Stability AI 等)的高性能模型,并结合 AWS 的基础设施和工具,帮助用户构建安全、高效的生成式 AI 应用程序。
典型应用场景
客户支持
构建 AI 聊天机器人,自动回答用户问题,处理订单查询或索赔流程(如 [6] 中提到的零售订单管理)。
内容生成
生成博客文章、社交媒体内容、广告文案,或根据输入数据创建图像(如 Stability AI 的 SDXL 模型)。
数据分析与洞察
通过模型嵌入和 RAG 技术,从非结构化数据中提取关键信息(如合同分析、会议记录总结)。
自动化工作流
代理可执行代码分析、数据可视化、数学问题求解等复杂任务(如 [3] 中提到的代码解释功能)。
提示工程
系统提示
角色设定:通过系统提示可以为LLM设定角色。这将指导模型扮演指定角色并在特定范围内生成内容。
边界设定:边界设定能指导LLM在限定空间内生成内容。这有助于明确指令分解和精准执行。
安全增强:安全性是任何软件应用的重要方面。系统提示通过在用户输入与LLM之间增加额外保护层,提升了LLM应用的安全性。
清晰的系统提示能帮助LLM将指令分解为步骤并做出相应决策。这将使系统更清晰、简洁和高效。设计系统提示时需要:
- 确定用例:通用系统容易出错,可能扮演任何角色。为最小化幻觉风险,需先明确用例并为LLM分配角色。例如:"作为研究助理,分解用户查询、使用输入数据验证并生成内容"或"作为营销助理,基于输入生成输出,不自行假设信息。如需更多信息,请询问用户"。
- 确定约束和边界:系统必须理解不应逾越的限制范围。例如:"如未知答案,请回复'无法提供帮助'而非编造信息"或"以严格JSON格式返回响应,返回前验证并修复JSON错误"。
- 确定呈现要求:格式要求需预先考虑。例如:"创建项目符号列表"或"以JSON格式生成输出"。
检索增强生成(RAG)
- <p></p><p></p>[code]+------------------+ +---------------------+
- | 原始数据源 | ----> | 定期同步到 S3 |
- +------------------+ 同步 +----------+----------+
- |
- v
- +----------------------------------+
- | 分块处理 & 使用 Titan 嵌入模型 |
- | 将文本转换为向量表示 |
- +--------+---------------------------+
- |
- v
- +-------------------------------+
- | 存储至 AWS OpenSearch |
- | 向量数据库(知识库) |
- +-------------------------------+
- ↑
- |
- +------------------------------+
- | RAG 库 / 查询引擎 |
- | 接收用户查询,执行相似搜索 |
- +--------------+---------------+
- |
- v
- +-----------------------------+
- | 从 OpenSearch 检索相关数据块 |
- +--------------+--------------+
- |
- v
- +--------------------------------------+
- | 用检索结果丰富提示信息(Prompt) |
- +--------------+-----------------------+
- |
- v
- +----------------------------------------+
- | LLM(大语言模型)生成最终输出 |
- | 结合上下文,避免编造或注入错误信息 |
- +----------------------------------------+
复制代码 [/code]
- 知识库(KB)数据同步使用AWS OpenSearch存储生成的嵌入向量,源数据定期同步到S3存储桶以确保知识库信息最新。该S3存储桶作为知识库源数据,通过分块策略切分后存储在OpenSearch向量数据库中。
- 嵌入模型使用Amazon Titan嵌入模型将源数据转化为向量嵌入。Titan嵌入模型是一种文本到向量模型,向量以数学形式表示信息,展现数据的多维特征,支持高效搜索、索引和相似度计算,适用于聚类分析和最近邻查找等任务。
- 知识库创建使用Titan嵌入模型和分块策略创建知识库,确保数据高效切分和检索。S3源数据经过切块处理后存储于OpenSearch向量数据库,该服务提供无服务器架构以支持扩展、高效检索和过滤操作。
- RAG库构建RAG库以跨数据源执行RAG操作。当接收用户查询时,该库通过相似性搜索检索相关数据块,并用检索结果丰富提示内容,为LLM提供必要的上下文信息。
- 输出生成 LLM接收增强提示后,在限定角色下结合检索信息生成输出,避免注入不存在的数据或编造信息。
结论
该流程有效减少了幻觉现象,生成可溯源的事实信息。此外还尝试了另一种方法:使用LLM作为评判模型,对照金牌数据集评估生成内容的公正性,确保输出质量。
今天先到这儿,希望对云原生,技术领导力, 企业管理,系统架构设计与评估,团队管理, 项目管理, 产品管理,信息安全,团队建设 有参考作用 , 您可能感兴趣的文章:
构建创业公司突击小团队
国际化环境下系统架构演化
微服务架构设计
视频直播平台的系统架构演化
微服务与Docker介绍
Docker与CI持续集成/CD
互联网电商购物车架构演变案例
互联网业务场景下消息队列架构
互联网高效研发团队管理演进之一
消息系统架构设计演进
互联网电商搜索架构演化之一
企业信息化与软件工程的迷思
企业项目化管理介绍
软件项目成功之要素
人际沟通风格介绍一
精益IT组织与分享式领导
学习型组织与企业
企业创新文化与等级观念
组织目标与个人目标
初创公司人才招聘与管理
人才公司环境与企业文化
企业文化、团队文化与知识共享
高效能的团队建设
项目管理沟通计划
构建高效的研发与自动化运维
某大型电商云平台实践
互联网数据库架构设计思路
IT基础架构规划方案一(网络系统规划)
餐饮行业解决方案之客户分析流程
餐饮行业解决方案之采购战略制定与实施流程
餐饮行业解决方案之业务设计流程
供应链需求调研CheckList
企业应用之性能实时度量系统演变 如有想了解更多软件设计与架构, 系统IT,企业信息化, 团队管理 资讯,请关注我的微信订阅号:
作者:Petter Liu
出处:http://www.cnblogs.com/wintersun/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。 该文章也同时发布在我的独立博客中-Petter Liu Blog。
来源:程序园用户自行投稿发布,如果侵权,请联系站长删除
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作! |