随着大模型(LLM)能力越来越强,RAG(Retrieval Augmented Generation,检索增强生成)技术成为增强大模型知识准确性的关键手段。
通过检索实时数据、外部文档,模型能回答更多基于事实的问题,降低“幻觉”概率。
而 LangChain 的 LangGraph 能将 LLM、RAG、工具调用(Tools)整合成一个智能 Agent 流程图,极大提升了问答系统的动态能力。
本文通过一个完整示例,展示如何用 LangChain 构建一个「RAG + Agent」的问答系统,代码可直接复用,帮助大家快速落地智能应用。
工程结构
- llm_env.py # 初始化 LLM
- rag_agent.py # 结合 RAG 与 Agent 的主逻辑
复制代码 初始化 LLM
首先通过 llm_env.py 初始化一个 LLM 模型对象,供整个流程使用:- from langchain.chat_models import init_chat_model
- llm = init_chat_model("gpt-4o-mini", model_provider="openai")
复制代码 RAG + Agent 系统搭建
导入依赖
- import os
- import sys
- import time
- sys.path.append(os.getcwd())
- from llm_set import llm_env
- from langchain.embeddings import OpenAIEmbeddings
- from langchain_postgres import PGVector
- from langchain_community.document_loaders import WebBaseLoader
- from langchain_core.documents import Document
- from langchain_text_splitters import RecursiveCharacterTextSplitter
- from langgraph.graph import MessagesState, StateGraph
- from langchain_core.tools import tool
- from langchain_core.messages import HumanMessage, SystemMessage
- from langgraph.prebuilt import ToolNode, tools_condition
- from langgraph.graph import END
- from langgraph.checkpoint.postgres import PostgresSaver
复制代码 初始化 LLM 与 Embedding
- llm = llm_env.llm
- embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
复制代码 初始化向量数据库
- vector_store = PGVector(
- embeddings=embeddings,
- collection_name="my_rag_agent_docs",
- connection="postgresql+psycopg2://postgres:123456@localhost:5433/langchainvector",
- )
复制代码 加载网页文档
- url = "https://www.cnblogs.com/chenyishi/p/18926783"
- loader = WebBaseLoader(
- web_paths=(url,),
- )
- docs = loader.load()
- for doc in docs:
- doc.metadata["source"] = url
复制代码 文本分割 & 入库
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=50)
- all_splits = text_splitter.split_documents(docs)
- existing = vector_store.similarity_search(url, k=1, filter={"source": url})
- if not existing:
- _ = vector_store.add_documents(documents=all_splits)
- print("文档向量化完成")
复制代码 定义 RAG 检索工具
通过 @tool 装饰器,定义一个文档检索工具,供 Agent 动态调用:- @tool(response_format="content_and_artifact")
- def retrieve(query: str) -> tuple[str, dict]:
- """Retrieve relevant documents from the vector store."""
- retrieved_docs = vector_store.similarity_search(query, k=2)
- if not retrieved_docs:
- return "No relevant documents found.", {}
- return "\n\n".join(
- (f"Source: {doc.metadata}\n" f"Content: {doc.page_content}")
- for doc in retrieved_docs
- ), retrieved_docs
复制代码 定义 Agent Graph 节点
LLM 调用工具节点
- def query_or_respond(state: MessagesState):
- llm_with_tools = llm.bind_tools([retrieve])
- response = llm_with_tools.invoke(state["messages"])
- return {"messages": [response]}
复制代码 工具节点
- tools = ToolNode([retrieve])
复制代码 生成响应节点
- def generate(state: MessagesState):
- recent_tool_messages = []
- for message in reversed(state["messages"]):
- if message.type == "tool":
- recent_tool_messages.append(message)
- else:
- break
- tool_messages = recent_tool_messages[::-1]
- system_message_content = "\n\n".join(doc.content for doc in tool_messages)
- conversation_messages = [
- message
- for message in state["messages"]
- if message.type in ("human", "system")
- or (message.type == "ai" and not message.tool_calls)
- ]
- prompt = [SystemMessage(system_message_content)] + conversation_messages
- response = llm.invoke(prompt)
- return {"messages": [response]}
复制代码 组装 Agent 流程图
- graph_builder = StateGraph(MessagesState)
- graph_builder.add_node(query_or_respond)
- graph_builder.add_node(tools)
- graph_builder.add_node(generate)
- graph_builder.set_entry_point("query_or_respond")
- graph_builder.add_conditional_edges(
- "query_or_respond",
- tools_condition,
- path_map={END: END, "tools": "tools"},
- )
- graph_builder.add_edge("tools", "generate")
- graph_builder.add_edge("generate", END)
复制代码 启用 Checkpoint & 运行流程
数据库存储器
- DB_URI = "postgresql://postgres:123456@localhost:5433/langchaindemo?sslmode=disable"
- with PostgresSaver.from_conn_string(DB_URI) as checkpointer:
- checkpointer.setup()
- graph = graph_builder.compile(checkpointer=checkpointer)
复制代码 启动交互循环
- input_thread_id = input("输入thread_id:")
- time_str = time.strftime("%Y%m%d", time.localtime())
- config = {"configurable": {"thread_id": f"rag-{time_str}-demo-{input_thread_id}"}}
- print("输入问题,输入 exit 退出。")
- while True:
- query = input("你: ")
- if query.strip().lower() == "exit":
- break
- response = graph.invoke({"messages": [HumanMessage(content=query)]}, config=config)
- print(response)
复制代码 总结
本文完整展示了如何用 LangChain + LangGraph,结合:
LLM(大模型)
Embedding 检索(RAG)
Agent 动态调用工具
流程图编排
Checkpoint 存储
构建一个智能问答系统。通过将工具(RAG 检索)和 Agent 机制结合,可以让 LLM 在需要的时候 自主调用检索能力,有效增强对知识的引用能力,解决“幻觉”问题,具备很好的落地应用价值。
来源:程序园用户自行投稿发布,如果侵权,请联系站长删除
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作! |