检索增强生成(RAG)是一种结合“向量检索”与“大语言模型”的技术路线,能在问答、摘要、文档分析等场景中大幅提升准确性与上下文利用率。
本文将基于 LangChain 构建一个完整的 RAG 流程,结合 PGVector 作为向量数据库,并用 LangGraph 构建状态图控制流程。
大语言模型初始化(llm_env.py)
我们首先使用 LangChain 提供的模型初始化器加载 gpt-4o-mini 模型,供后续问答使用。- # llm_env.py
- from langchain.chat_models import init_chat_model
- llm = init_chat_model("gpt-4o-mini", model_provider="openai")
复制代码 RAG 主体流程(rag.py)
以下是整个 RAG 系统的主流程代码,主要包括:文档加载与切分、向量存储、状态图建模(analyze→retrieve→generate)、交互式问答。- # rag.py
- import os
- import sys
- import time
- sys.path.append(os.getcwd())
- from llm_set import llm_env
- from langchain_openai import OpenAIEmbeddings
- from langchain_postgres import PGVector
- from langchain_community.document_loaders import WebBaseLoader
- from langchain_core.documents import Document
- from langchain_text_splitters import RecursiveCharacterTextSplitter
- from langgraph.graph import START, StateGraph
- from typing_extensions import List, TypedDict, Annotated
- from typing import Literal
- from langgraph.checkpoint.postgres import PostgresSaver
- from langgraph.graph.message import add_messages
- from langchain_core.messages import HumanMessage, BaseMessage
- from langchain_core.prompts import ChatPromptTemplate
- # 初始化 LLM
- llm = llm_env.llm
- # 嵌入模型
- embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
- # 向量数据库初始化
- vector_store = PGVector(
- embeddings=embeddings,
- collection_name="my_rag_docs",
- connection="postgresql+psycopg2://postgres:123456@localhost:5433/langchainvector",
- )
- # 加载网页内容
- url = "https://python.langchain.com/docs/tutorials/qa_chat_history/"
- loader = WebBaseLoader(web_paths=(url,))
- docs = loader.load()
- for doc in docs:
- doc.metadata["source"] = url
- # 文本分割
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=50)
- all_splits = text_splitter.split_documents(docs)
- # 添加 section 元数据
- total_documents = len(all_splits)
- third = total_documents // 3
- for i, document in enumerate(all_splits):
- if i < third:
- document.metadata["section"] = "beginning"
- elif i < 2 * third:
- document.metadata["section"] = "middle"
- else:
- document.metadata["section"] = "end"
- # 检查是否已存在向量
- existing = vector_store.similarity_search(url, k=1, filter={"source": url})
- if not existing:
- _ = vector_store.add_documents(documents=all_splits)
- print("文档向量化完成")
复制代码 分析、检索与生成模块
接下来,我们定义三个函数构成 LangGraph 的流程:analyze → retrieve → generate。- class Search(TypedDict):
- query: Annotated[str, "The question to be answered"]
- section: Annotated[
- Literal["beginning", "middle", "end"],
- ...,
- "Section to query.",
- ]
- class State(TypedDict):
- messages: Annotated[list[BaseMessage], add_messages]
- query: Search
- context: List[Document]
- answer: set
- # 分析意图 → 获取 query 与 section
- def analyze(state: State):
- structtured_llm = llm.with_structured_output(Search)
- query = structtured_llm.invoke(state["messages"])
- return {"query": query}
- # 相似度检索
- def retrieve(state: State):
- query = state["query"]
- if hasattr(query, 'section'):
- filter = {"section": query["section"]}
- else:
- filter = None
- retrieved_docs = vector_store.similarity_search(query["query"], filter=filter)
- return {"context": retrieved_docs}
复制代码 生成模块基于 ChatPromptTemplate 和当前上下文生成回答:- prompt_template = ChatPromptTemplate.from_messages(
- [
- ("system", "尽你所能按照上下文:{context},回答问题:{question}。"),
- ]
- )
- def generate(state: State):
- docs_content = "\n\n".join(doc.page_content for doc in state["context"])
- messages = prompt_template.invoke({
- "question": state["query"]["query"],
- "context": docs_content,
- })
- response = llm.invoke(messages)
- return {"answer": response.content, "messages": [response]}
复制代码 构建 LangGraph 流程图
定义好状态结构后,我们构建 LangGraph:- graph_builder = StateGraph(State).add_sequence([analyze, retrieve, generate])
- graph_builder.add_edge(START, "analyze")
复制代码 PG 数据库中保存中间状态(Checkpoint)
我们通过 PostgresSaver 记录每次对话的中间状态:- DB_URI = "postgresql://postgres:123456@localhost:5433/langchaindemo?sslmode=disable"
- with PostgresSaver.from_conn_string(DB_URI) as checkpointer:
- checkpointer.setup()
- graph = graph_builder.compile(checkpointer=checkpointer)
- input_thread_id = input("输入thread_id:")
- time_str = time.strftime("%Y%m%d", time.localtime())
- config = {"configurable": {"thread_id": f"rag-{time_str}-demo-{input_thread_id}"}}
- print("输入问题,输入 exit 退出。")
- while True:
- query = input("你: ")
- if query.strip().lower() == "exit":
- break
- input_messages = [HumanMessage(query)]
- response = graph.invoke({"messages": input_messages}, config=config)
- print(response["answer"])
复制代码 效果
总结
本文通过 LangChain 的模块式能力,结合 PGVector 向量库与 LangGraph 有状态控制系统,实现了一个可交互、可持久化、支持多文档结构的 RAG 系统。其优势包括:
- 支持结构化提问理解(分区查询)
- 自动化分段与元数据标记
- 状态流追踪与恢复
- 可拓展支持文档上传、缓存优化、多用户配置
来源:程序园用户自行投稿发布,如果侵权,请联系站长删除
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作! |