逻辑回归介绍
逻辑回归(Logistic Regression)是一种经典的分类算法,尽管名字中带有 “回归”,但它本质上用于解决二分类问题(也可扩展到多分类)。逻辑回归的本质是 “在线性回归的基础上,通过一个映射函数将输出转化为概率(从而实现对类别概率的预测)”,这个映射函数就是Sigmoid函数。
逻辑回归是机器学习中最基础的分类算法之一,核心是通过 Sigmoid 函数将线性输出转化为概率,结合交叉熵损失和梯度下降求解参数。
它虽简单,但在实际业务中(尤其是需要可解释性的场景)仍被广泛使用,也是理解更复杂分类模型(如神经网络)的基础。
sigmoid函数
- def sigmoid(z):
- """
- Compute the sigmoid of z
- Args:
- z (ndarray): A scalar, numpy array of any size.
- Returns:
- g (ndarray): sigmoid(z), with the same shape as z
-
- """
- g = 1 / (1 + np.exp(-z))
-
- return g
复制代码
逻辑回归模型
逻辑回归的决策边界
线性逻辑回归
根据sigmoid函数图象:z=0是中间位置,视为决策边界;那么为了得到决策边界的特征情况,我们假设:
- 线性模型 z = w1 * x1 + w2 * x2 + b
- 参数 w1=w2=1, b=03,那么x2 = -x1 + 3这条直线就是决策边界
如果特征x在这条线的右边,那么此逻辑回归则预测为1,反之则预测为0;(分为两类)
多项式逻辑回归
多项式回归决策边界,我们假设:
- 多项式模型:z = w1 * x1**2 + w2 * x2**2 + b
- 参数:w1=w2=1, b=-1
如果特征x在圆的外面,那么此逻辑回归则预测为1,反之则预测为0;(分为两类)
扩展:随着多项式的复杂度增加,还可以拟合更更多非线性的复杂情况
逻辑回归的损失函数
平方损失和交叉熵损失
回顾下线性回归的损失函数(平方损失):
平方误差损失函数不适用于逻辑回归模型:平方损失在逻辑回归中是 “非凸函数”(存在多个局部最优解),难以优化;
所以我们需要一个新的损失函数,即交叉熵损失;交叉熵损失是 “凸函数”,可通过梯度下降高效找到全局最优。
交叉熵源于信息论,我们暂时不做深入介绍,直接给出交叉熵损失函数公式:
对数回顾
复习下对数函数的性质,以便理解为什么 交叉熵损失是 “凸函数”?
简化交叉熵损失函数
为什么要用这个函数来表示?来源自 最大释然估计(Maximum Likelihood),这里不做过多介绍。
简化结果:
逻辑回归的梯度计算
自然对数求导公式:
链式求导法则:
⚠️注意:
过拟合问题
线性回归过拟合
逻辑回归过拟合
- 欠拟合(underfit),存在高偏差(bias)
- 泛化(generalization):希望我们的学习算法在训练集之外的数据上也能表现良好(预测准确)
- 过拟合(overfit),存在高方差(variance)
解决过拟合的办法
- 特征选择:只选择部分最相关的特征(基于直觉intuition)进行训练;缺点是丢掉了部分可能有用的信息
- 正则化:正则化是一种更温和的减少某些特征的影响,而无需做像测地消除它那样苛刻的事:
- 鼓励学习算法缩小参数,而不是直接将参数设置为0(保留所有特征的同时避免让部分特征产生过大的影响)
- 鼓励把 w1 ~ wn 变小,b不用变小
正则化模型
It turns out that regularization is a way
to more gently reduce ths impacts of some of the features without doing something as harsh as eliminating it outright.
关于正则化项的说明:
带正则化项的损失函数
正则化线性回归
损失函数:
梯度计算:
分析梯度计算公式,由于alpha和lambda通常是很小的值,所以相当于在每次迭代之前把参数w缩小了一点点,这也就是正则化的工作原理,如下所示:
正则化逻辑回归
损失函数:
梯度计算:
线性回归和逻辑回归正则化总结
逻辑回归实战
模型选择
可视化训练数据,基于此数据选择线性逻辑回归模型
关键代码实现
- def sigmoid(z):
- g = 1 / (1 + np.exp(-z))
- return g
- def compute_cost(X, y, w, b, lambda_= 1):
- """
- Computes the cost over all examples
- Args:
- X : (ndarray Shape (m,n)) data, m examples by n features
- y : (array_like Shape (m,)) target value
- w : (array_like Shape (n,)) Values of parameters of the model
- b : scalar Values of bias parameter of the model
- lambda_: unused placeholder
- Returns:
- total_cost: (scalar) cost
- """
- m, n = X.shape
- total_cost = 0
- for i in range(m):
- f_wb_i = sigmoid(np.dot(X[i], w) + b)
- loss = -y[i] * np.log(f_wb_i) - (1 - y[i]) * np.log(1 - f_wb_i)
- total_cost += loss
- total_cost = total_cost / m
- return total_cost
- def compute_gradient(X, y, w, b, lambda_=None):
- """
- Computes the gradient for logistic regression
-
- Args:
- X : (ndarray Shape (m,n)) variable such as house size
- y : (array_like Shape (m,1)) actual value
- w : (array_like Shape (n,1)) values of parameters of the model
- b : (scalar) value of parameter of the model
- lambda_: unused placeholder.
- Returns
- dj_dw: (array_like Shape (n,1)) The gradient of the cost w.r.t. the parameters w.
- dj_db: (scalar) The gradient of the cost w.r.t. the parameter b.
- """
- m, n = X.shape
- dj_dw = np.zeros(n)
- dj_db = 0.
- for i in range(m):
- f_wb_i = sigmoid(np.dot(X[i], w) + b)
- diff = f_wb_i - y[i]
- dj_db += diff
- for j in range(n):
- dj_dw[j] = dj_dw[j] + diff * X[i][j]
-
- dj_db = dj_db / m
- dj_dw = dj_dw / m
-
- return dj_db, dj_dw
- def gradient_descent(X, y, w_in, b_in, cost_function, gradient_function, alpha, num_iters, lambda_):
- """
- Performs batch gradient descent to learn theta. Updates theta by taking
- num_iters gradient steps with learning rate alpha
-
- Args:
- X : (array_like Shape (m, n)
- y : (array_like Shape (m,))
- w_in : (array_like Shape (n,)) Initial values of parameters of the model
- b_in : (scalar) Initial value of parameter of the model
- cost_function: function to compute cost
- alpha : (float) Learning rate
- num_iters : (int) number of iterations to run gradient descent
- lambda_ (scalar, float) regularization constant
-
- Returns:
- w : (array_like Shape (n,)) Updated values of parameters of the model after
- running gradient descent
- b : (scalar) Updated value of parameter of the model after
- running gradient descent
- """
-
- # number of training examples
- m = len(X)
-
- # An array to store cost J and w's at each iteration primarily for graphing later
- J_history = []
- w_history = []
- w = copy.deepcopy(w_in)
- b = b_in
-
- for i in range(num_iters):
- dj_db, dj_dw = gradient_function(X, y, w, b, lambda_)
- w = w - alpha * dj_dw
- b = b - alpha * dj_db
- cost = cost_function(X, y, w, b, lambda_)
- J_history.append(cost)
- w_history.append(w)
- if i % math.ceil(num_iters / 10) == 0:
- print(f"{i:4d} cost: {cost:6f}, w: {w}, b: {b}")
-
- return w, b, J_history, w_history #return w and J,w history for graphing
- def predict(X, w, b):
- m, n = X.shape
- p = np.zeros(m)
- for i in range(m):
- f_wb = sigmoid(np.dot(X[i], w) + b)
- p[i] = f_wb >= 0.5
- return p
复制代码 结果展示
- import numpy as np
- import matplotlib.pyplot as plt
- import matplotlib.font_manager as fm
- # 支持显示中文
- font_path = '/System/Library/Fonts/STHeiti Light.ttc'
- custom_font = fm.FontProperties(fname=font_path)
- plt.rcParams["font.family"] = custom_font.get_name()
- # 载入训练集
- X_train, y_train = load_data("data/ex2data1.txt")
- # 训练模型
- np.random.seed(1)
- intial_w = 0.01 * (np.random.rand(2).reshape(-1,1) - 0.5)
- initial_b = -8
- iterations = 10000
- alpha = 0.001
- w_out, b_out, J_history,_ = gradient_descent(X_train ,y_train, initial_w, initial_b, compute_cost, compute_gradient, alpha, iterations, 0)
- # 根据训练结果(w_out和b_out)计算决策边界
- #f = w0*x0 + w1*x1 + b
- # x1 = -1 * (w0*x0 + b) / w1
- plot_x = np.array([min(X_train[:, 0]), max(X_train[:, 0])])
- plot_y = (-1. / w_out[1]) * (w_out[0] * plot_x + b_out)
- # 将训练数据分类
- x0s_pos = []
- x1s_pos = []
- x0s_neg = []
- x1s_neg = []
- for i in range(len(X_train)):
- x = X_train[i]
- # print(x)
- y_i = y_train[i]
- if y_i == 1:
- x0s_pos.append(x[0])
- x1s_pos.append(x[1])
- else:
- x0s_neg.append(x[0])
- x1s_neg.append(x[1])
- # 绘图
- plt.figure(figsize=(8, 6))
- plt.scatter(x0s_pos, x1s_pos, marker='o', c='green', label="Admitted")
- plt.scatter(x0s_neg, x1s_neg, marker='x', c='red', label="Not admitted")
- plt.plot(plot_x, plot_y, lw=1, label="决策边界")
- plt.xlabel('Exam 1 score', fontsize=12)
- plt.ylabel('Exam 2 score', fontsize=12)
- plt.title('在二维平面上可视化分类模型的决策边界', fontsize=14)
- plt.legend(fontsize=12, loc='upper center')
- plt.grid(True)
- plt.show()
- # 使用训练集计算预测准确率
- p = predict(X_train, w_out, b_out)
- print('Train Accuracy: %f'%(np.mean(p == y_train) * 100))
- # Train Accuracy: 92.000000
复制代码
正则化逻辑回归实战
模型选择
可视化训练数据,基于此数据选择多项式逻辑回归模型
关键代码实现
由于要拟合非线性决策边界,所以要增加特征的复杂度(训练数据里只有2个特征)。
特征映射函数- # 将输入特征 X1 和 X2 转换为六次多项式特征
- # 这个函数常用于逻辑回归或支持向量机等模型中,通过增加特征的复杂度来拟合非线性决策边界。
- def map_feature(X1, X2):
- """
- Feature mapping function to polynomial features
- """
- X1 = np.atleast_1d(X1)
- X2 = np.atleast_1d(X2)
- degree = 6
- out = []
- for i in range(1, degree+1):
- for j in range(i + 1):
- out.append((X1**(i-j) * (X2**j)))
- return np.stack(out, axis=1)
复制代码 正则化后的损失函数和梯度计算函数- def compute_cost_reg(X, y, w, b, lambda_ = 1):
- """
- Computes the cost over all examples
- Args:
- X : (array_like Shape (m,n)) data, m examples by n features
- y : (array_like Shape (m,)) target value
- w : (array_like Shape (n,)) Values of parameters of the model
- b : (array_like Shape (n,)) Values of bias parameter of the model
- lambda_ : (scalar, float) Controls amount of regularization
- Returns:
- total_cost: (scalar) cost
- """
- m, n = X.shape
- # Calls the compute_cost function that you implemented above
- cost_without_reg = compute_cost(X, y, w, b)
-
- reg_cost = 0.
- for j in range(n):
- reg_cost += w[j]**2
-
- # Add the regularization cost to get the total cost
- total_cost = cost_without_reg + (lambda_/(2 * m)) * reg_cost
- return total_cost
- def compute_gradient_reg(X, y, w, b, lambda_ = 1):
- """
- Computes the gradient for linear regression
-
- Args:
- X : (ndarray Shape (m,n)) variable such as house size
- y : (ndarray Shape (m,)) actual value
- w : (ndarray Shape (n,)) values of parameters of the model
- b : (scalar) value of parameter of the model
- lambda_ : (scalar,float) regularization constant
- Returns
- dj_db: (scalar) The gradient of the cost w.r.t. the parameter b.
- dj_dw: (ndarray Shape (n,)) The gradient of the cost w.r.t. the parameters w.
- """
- m, n = X.shape
-
- dj_db, dj_dw = compute_gradient(X, y, w, b)
- # Add the regularization
- for j in range(n):
- dj_dw[j] += (lambda_ / m) * w[j]
-
- return dj_db, dj_dw
复制代码 结果展示
- import numpy as np
- import matplotlib.pyplot as plt
- import matplotlib.font_manager as fm
- # 支持显示中文
- font_path = '/System/Library/Fonts/STHeiti Light.ttc'
- custom_font = fm.FontProperties(fname=font_path)
- plt.rcParams["font.family"] = custom_font.get_name()
- # 载入训练集
- X_train, y_train = load_data("data/ex2data2.txt")
- # 通过增加特征的复杂度来拟合非线性决策边界
- X_mapped = map_feature(X_train[:, 0], X_train[:, 1])
- print("Original shape of data:", X_train.shape)
- print("Shape after feature mapping:", X_mapped.shape)
- # 训练模型
- np.random.seed(1)
- initial_w = np.random.rand(X_mapped.shape[1])-0.5
- initial_b = 1.
- # Set regularization parameter lambda_ to 1 (you can try varying this)
- lambda_ = 0.5
- iterations = 10000
- alpha = 0.01
- w_out, b_out, J_history, _ = gradient_descent(X_mapped, y_train, initial_w, initial_b, compute_cost_reg, compute_gradient_reg, alpha, iterations, lambda_)
- # 根据训练结果(w_out和b_out)计算决策边界
- # - 创建网格点 u 和 v 覆盖特征空间
- u = np.linspace(-1, 1.5, 50)
- v = np.linspace(-1, 1.5, 50)
- # - 计算每个网格点处的预测概率 z
- z = np.zeros((len(u), len(v)))
- # Evaluate z = theta*x over the grid
- for i in range(len(u)):
- for j in range(len(v)):
- z[i,j] = sig(np.dot(map_feature(u[i], v[j]), w_out) + b_out)
- # - 转置 z 是必要的,因为contour函数期望的输入格式与我们的计算顺序不一致
- z = z.T
- # 分类
- x0s_pos = []
- x1s_pos = []
- x0s_neg = []
- x1s_neg = []
- for i in range(len(X_train)):
- x = X_train[i]
- # print(x)
- y_i = y_train[i]
- if y_i == 1:
- x0s_pos.append(x[0])
- x1s_pos.append(x[1])
- else:
- x0s_neg.append(x[0])
- x1s_neg.append(x[1])
- # 绘图
- plt.figure(figsize=(8, 6))
- plt.scatter(x0s_pos, x1s_pos, marker='o', c='black', label="y=1")
- plt.scatter(x0s_neg, x1s_neg, marker='x', c='orange', label="y=0")
- # 绘制决策边界(等高线)
- plt.contour(u,v,z, levels = [0.5], colors="green")
- # 创建虚拟线条用于图例(颜色和线型需与等高线一致)
- plt.plot([], [], color='green', label="决策边界")
- plt.xlabel('Test 1', fontsize=12)
- plt.ylabel('Test 2', fontsize=12)
- plt.title('正则化逻辑回归模型分类效果可视化(lambda=0.5)', fontsize=14)
- # plt.legend(fontsize=12, loc='upper center')
- plt.legend(fontsize=12)
- plt.grid(True)
- plt.show()
- #Compute accuracy on the training set
- p = predict(X_mapped, w_out, b_out)
- print('Train Accuracy: %f'%(np.mean(p == y_train) * 100))
- # Train Accuracy: 83.050847
复制代码
正则化效果对比
正则化对损失和决策边界的影响
正则化项lambda参数大小对决策边界的影响
参考
吴恩达团队在Coursera开设的机器学习课程:https://www.coursera.org/specializations/machine-learning-introduction
在B站学习:https://www.bilibili.com/video/BV1Pa411X76s
来源:程序园用户自行投稿发布,如果侵权,请联系站长删除
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作! |