Camel介绍
CAMEL 是一个开源社区,致力于探索代理的扩展规律。我们相信,在大规模研究这些代理可以提供对其行为、能力和潜在风险的宝贵见解。为了促进该领域的研究,我们实现了并支持各种类型的代理、任务、提示、模型和模拟环境。
CAMEL :找到智能体的扩展规律。第一个也是最好的多智能体框架。
CAMEL 框架设计原则
可演化性
该框架通过生成数据并与环境交互,使多智能体系统能够持续进化。这种进化可以由可验证奖励驱动的强化学习或监督学习驱动。
规模性
该框架旨在支持百万级代理的系统,确保在大规模情况下实现高效的协调、通信和资源管理。
有状态性
代理保持状态记忆,使它们能够进行多步与环境的交互,并高效地应对复杂的任务。
代码即提示
每一行代码和注释都作为代理的提示。代码应编写得清晰易读,确保人类和代理都能有效解读。
GitHub地址:https://github.com/camel-ai/camel。
Camel初探
我使用从源代码中使用 uv 这种方式进行安装。- git clone https://github.com/camel-ai/camel.git
复制代码 如果没安装uv需要安装。创建一个虚拟环境。- uv venv .venv --python=3.10
复制代码 激活虚拟环境。安装CAMEL及其依赖。- uv pip install -e ".[all, dev, docs]"
复制代码 开发者可以安装pre-commit hooks 与 mypy。- uv pip install pre-commit mypy
复制代码 现在先随便跑个例子看看。
我想要使用硅基流动的模型,就可以在.env文件中这样写:- Silicon_Model_ID="Qwen/Qwen2.5-72B-Instruct"
- SiliconCloud_API_KEY="你的api_key"
- SiliconCloud_Base_URL="https://api.siliconflow.cn/v1"
复制代码 我跑的例子是这个:camel\examples\ai_society\role_playing_multi_lingual.py
将代码修改为如下的形式即可:- # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
- from colorama import Fore
- from camel.societies import RolePlaying
- from camel.utils import print_text_animated
- def main(model=None) -> None:
- task_prompt = "Develop a trading bot for the stock market"
- role_play_session = RolePlaying(
- assistant_role_name="Python Programmer",
- assistant_agent_kwargs=dict(model=model),
- user_role_name="Stock Trader",
- user_agent_kwargs=dict(model=model),
- task_prompt=task_prompt,
- with_task_specify=True,
- task_specify_agent_kwargs=dict(model=model),
- output_language="Chinese", # Arabic, French, Spanish, ...
- )
- print(
- Fore.GREEN
- + f"AI Assistant sys message:\n{role_play_session.assistant_sys_msg}\n"
- )
- print(
- Fore.BLUE + f"AI User sys message:\n{role_play_session.user_sys_msg}\n"
- )
- print(Fore.YELLOW + f"Original task prompt:\n{task_prompt}\n")
- print(
- Fore.CYAN
- + "Specified task prompt:"
- + f"\n{role_play_session.specified_task_prompt}\n"
- )
- print(Fore.RED + f"Final task prompt:\n{role_play_session.task_prompt}\n")
- chat_turn_limit, n = 50, 0
- input_msg = role_play_session.init_chat()
- while n < chat_turn_limit:
- n += 1
- assistant_response, user_response = role_play_session.step(input_msg)
- if assistant_response.terminated:
- print(
- Fore.GREEN
- + (
- "AI Assistant terminated. Reason: "
- f"{assistant_response.info['termination_reasons']}."
- )
- )
- break
- if user_response.terminated:
- print(
- Fore.GREEN
- + (
- "AI User terminated. "
- f"Reason: {user_response.info['termination_reasons']}."
- )
- )
- break
- print_text_animated(
- Fore.BLUE + f"AI User:\n\n{user_response.msg.content}\n"
- )
- print_text_animated(
- Fore.GREEN + "AI Assistant:\n\n"
- f"{assistant_response.msg.content}\n"
- )
- if "CAMEL_TASK_DONE" in user_response.msg.content:
- break
- input_msg = assistant_response.msg
- if __name__ == "__main__":
- from camel.models import ModelFactory
- from camel.types import ModelPlatformType, ModelType
- import pathlib
- import os
- from dotenv import load_dotenv
- base_dir = pathlib.Path(__file__).parent.parent.parent
- env_path = base_dir / ".env"
- load_dotenv(dotenv_path=str(env_path))
- modeltype = os.getenv("Silicon_Model_ID")
- api_key = os.getenv("SiliconCloud_API_KEY")
- base_url = os.getenv("SiliconCloud_Base_URL")
- siliconcloud_model = ModelFactory.create(
- model_platform=ModelPlatformType.OPENAI_COMPATIBLE_MODEL,
- model_type=modeltype,
- api_key=api_key,
- url=base_url,
- model_config_dict={"temperature": 0.4, "max_tokens": 4096},
- )
- main(siliconcloud_model)
复制代码 运行效果:
算是把环境搭建好了。
现在就可以开始学习Camel这个多智能体框架了。
来源:程序园用户自行投稿发布,如果侵权,请联系站长删除
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作! |