博客地址:https://www.cnblogs.com/zylyehuo/
参考 《动手学深度学习》第二版
代码总览
- %matplotlib inline
- import torch
- from d2l import torch as d2l
复制代码- torch.set_printoptions(2) # 精简输出精度
复制代码
- def multibox_prior(data, sizes, ratios):
- """生成以每个像素为中心具有不同形状的锚框"""
- in_height, in_width = data.shape[-2:]
- device, num_sizes, num_ratios = data.device, len(sizes), len(ratios)
- boxes_per_pixel = (num_sizes + num_ratios - 1)
- size_tensor = torch.tensor(sizes, device=device)
- ratio_tensor = torch.tensor(ratios, device=device)
- # 为了将锚点移动到像素的中心,需要设置偏移量。
- # 因为一个像素的高为1且宽为1,我们选择偏移我们的中心0.5
- offset_h, offset_w = 0.5, 0.5
- steps_h = 1.0 / in_height # 在y轴上缩放步长
- steps_w = 1.0 / in_width # 在x轴上缩放步长
- # 生成锚框的所有中心点
- center_h = (torch.arange(in_height, device=device) + offset_h) * steps_h
- center_w = (torch.arange(in_width, device=device) + offset_w) * steps_w
- shift_y, shift_x = torch.meshgrid(center_h, center_w, indexing='ij')
- shift_y, shift_x = shift_y.reshape(-1), shift_x.reshape(-1)
- # 生成“boxes_per_pixel”个高和宽,
- # 之后用于创建锚框的四角坐标(xmin,xmax,ymin,ymax)
- w = torch.cat((size_tensor * torch.sqrt(ratio_tensor[0]),
- sizes[0] * torch.sqrt(ratio_tensor[1:])))\
- * in_height / in_width # 处理矩形输入
- h = torch.cat((size_tensor / torch.sqrt(ratio_tensor[0]),
- sizes[0] / torch.sqrt(ratio_tensor[1:])))
- # 除以2来获得半高和半宽
- anchor_manipulations = torch.stack((-w, -h, w, h)).T.repeat(
- in_height * in_width, 1) / 2
- # 每个中心点都将有“boxes_per_pixel”个锚框,
- # 所以生成含所有锚框中心的网格,重复了“boxes_per_pixel”次
- out_grid = torch.stack([shift_x, shift_y, shift_x, shift_y],
- dim=1).repeat_interleave(boxes_per_pixel, dim=0)
- output = out_grid + anchor_manipulations
- return output.unsqueeze(0)
复制代码- # 返回的锚框变量Y的形状是(批量大小,锚框的数量,4)
复制代码- img = d2l.plt.imread('./assets/catdog.jpg')
- h, w = img.shape[:2]
- print(h, w)
复制代码- X = torch.rand(size=(1, 3, h, w))
- Y = multibox_prior(X, sizes=[0.75, 0.5, 0.25], ratios=[1, 2, 0.5])
- Y.shape
复制代码- boxes = Y.reshape(h, w, 5, 4)
- boxes[250, 250, 0, :]
复制代码- def show_bboxes(axes, bboxes, labels=None, colors=None):
- """显示所有边界框"""
- def _make_list(obj, default_values=None):
- if obj is None:
- obj = default_values
- elif not isinstance(obj, (list, tuple)):
- obj = [obj]
- return obj
- labels = _make_list(labels)
- colors = _make_list(colors, ['b', 'g', 'r', 'm', 'c'])
- for i, bbox in enumerate(bboxes):
- color = colors[i % len(colors)]
- rect = d2l.bbox_to_rect(bbox.detach().numpy(), color)
- axes.add_patch(rect)
- if labels and len(labels) > i:
- text_color = 'k' if color == 'w' else 'w'
- axes.text(rect.xy[0], rect.xy[1], labels[i],
- va='center', ha='center', fontsize=9, color=text_color,
- bbox=dict(facecolor=color, lw=0))
复制代码- d2l.set_figsize()
- bbox_scale = torch.tensor((w, h, w, h))
- fig = d2l.plt.imshow(img)
- show_bboxes(fig.axes, boxes[250, 250, :, :] * bbox_scale,
- ['s=0.75, r=1', 's=0.5, r=1', 's=0.25, r=1', 's=0.75, r=2',
- 's=0.75, r=0.5'])
复制代码
- def box_iou(boxes1, boxes2):
- """计算两个锚框或边界框列表中成对的交并比"""
- box_area = lambda boxes: ((boxes[:, 2] - boxes[:, 0]) *
- (boxes[:, 3] - boxes[:, 1]))
- # boxes1,boxes2,areas1,areas2的形状:
- # boxes1:(boxes1的数量,4),
- # boxes2:(boxes2的数量,4),
- # areas1:(boxes1的数量,),
- # areas2:(boxes2的数量,)
- areas1 = box_area(boxes1)
- areas2 = box_area(boxes2)
- # inter_upperlefts,inter_lowerrights,inters的形状:
- # (boxes1的数量,boxes2的数量,2)
- inter_upperlefts = torch.max(boxes1[:, None, :2], boxes2[:, :2])
- inter_lowerrights = torch.min(boxes1[:, None, 2:], boxes2[:, 2:])
- inters = (inter_lowerrights - inter_upperlefts).clamp(min=0)
- # inter_areasandunion_areas的形状:(boxes1的数量,boxes2的数量)
- inter_areas = inters[:, :, 0] * inters[:, :, 1]
- union_areas = areas1[:, None] + areas2 - inter_areas
- return inter_areas / union_areas
复制代码- def assign_anchor_to_bbox(ground_truth, anchors, device, iou_threshold=0.5):
- """将最接近的真实边界框分配给锚框"""
- num_anchors, num_gt_boxes = anchors.shape[0], ground_truth.shape[0]
- # 位于第i行和第j列的元素x_ij是锚框i和真实边界框j的IoU
- jaccard = box_iou(anchors, ground_truth)
- # 对于每个锚框,分配的真实边界框的张量
- anchors_bbox_map = torch.full((num_anchors,), -1, dtype=torch.long,
- device=device)
- # 根据阈值,决定是否分配真实边界框
- max_ious, indices = torch.max(jaccard, dim=1)
- anc_i = torch.nonzero(max_ious >= iou_threshold).reshape(-1)
- box_j = indices[max_ious >= iou_threshold]
- anchors_bbox_map[anc_i] = box_j
- col_discard = torch.full((num_anchors,), -1)
- row_discard = torch.full((num_gt_boxes,), -1)
- for _ in range(num_gt_boxes):
- max_idx = torch.argmax(jaccard)
- box_idx = (max_idx % num_gt_boxes).long()
- anc_idx = (max_idx / num_gt_boxes).long()
- anchors_bbox_map[anc_idx] = box_idx
- jaccard[:, box_idx] = col_discard
- jaccard[anc_idx, :] = row_discard
- return anchors_bbox_map
复制代码- def offset_boxes(anchors, assigned_bb, eps=1e-6):
- """对锚框偏移量的转换"""
- c_anc = d2l.box_corner_to_center(anchors)
- c_assigned_bb = d2l.box_corner_to_center(assigned_bb)
- offset_xy = 10 * (c_assigned_bb[:, :2] - c_anc[:, :2]) / c_anc[:, 2:]
- offset_wh = 5 * torch.log(eps + c_assigned_bb[:, 2:] / c_anc[:, 2:])
- offset = torch.cat([offset_xy, offset_wh], axis=1)
- return offset
复制代码- def multibox_target(anchors, labels):
- """使用真实边界框标记锚框"""
- batch_size, anchors = labels.shape[0], anchors.squeeze(0)
- batch_offset, batch_mask, batch_class_labels = [], [], []
- device, num_anchors = anchors.device, anchors.shape[0]
- for i in range(batch_size):
- label = labels[i, :, :]
- anchors_bbox_map = assign_anchor_to_bbox(
- label[:, 1:], anchors, device)
- bbox_mask = ((anchors_bbox_map >= 0).float().unsqueeze(-1)).repeat(
- 1, 4)
- # 将类标签和分配的边界框坐标初始化为零
- class_labels = torch.zeros(num_anchors, dtype=torch.long,
- device=device)
- assigned_bb = torch.zeros((num_anchors, 4), dtype=torch.float32,
- device=device)
- # 使用真实边界框来标记锚框的类别。
- # 如果一个锚框没有被分配,标记其为背景(值为零)
- indices_true = torch.nonzero(anchors_bbox_map >= 0)
- bb_idx = anchors_bbox_map[indices_true]
- class_labels[indices_true] = label[bb_idx, 0].long() + 1
- assigned_bb[indices_true] = label[bb_idx, 1:]
- # 偏移量转换
- offset = offset_boxes(anchors, assigned_bb) * bbox_mask
- batch_offset.append(offset.reshape(-1))
- batch_mask.append(bbox_mask.reshape(-1))
- batch_class_labels.append(class_labels)
- bbox_offset = torch.stack(batch_offset)
- bbox_mask = torch.stack(batch_mask)
- class_labels = torch.stack(batch_class_labels)
- return (bbox_offset, bbox_mask, class_labels)
复制代码- ground_truth = torch.tensor([[0, 0.1, 0.08, 0.52, 0.92],
- [1, 0.55, 0.2, 0.9, 0.88]])
- anchors = torch.tensor([[0, 0.1, 0.2, 0.3], [0.15, 0.2, 0.4, 0.4],
- [0.63, 0.05, 0.88, 0.98], [0.66, 0.45, 0.8, 0.8],
- [0.57, 0.3, 0.92, 0.9]])
- fig = d2l.plt.imshow(img)
- show_bboxes(fig.axes, ground_truth[:, 1:] * bbox_scale, ['dog', 'cat'], 'k')
- show_bboxes(fig.axes, anchors * bbox_scale, ['0', '1', '2', '3', '4']);
复制代码
- # 根据狗和猫的真实边界框,标注这些锚框的分类和偏移量
复制代码- labels = multibox_target(anchors.unsqueeze(dim=0),
- ground_truth.unsqueeze(dim=0))
复制代码- def offset_inverse(anchors, offset_preds):
- """根据带有预测偏移量的锚框来预测边界框"""
- anc = d2l.box_corner_to_center(anchors)
- pred_bbox_xy = (offset_preds[:, :2] * anc[:, 2:] / 10) + anc[:, :2]
- pred_bbox_wh = torch.exp(offset_preds[:, 2:] / 5) * anc[:, 2:]
- pred_bbox = torch.cat((pred_bbox_xy, pred_bbox_wh), axis=1)
- predicted_bbox = d2l.box_center_to_corner(pred_bbox)
- return predicted_bbox
复制代码- # 以下nms函数按降序对置信度进行排序并返回其索引
复制代码 [code]def nms(boxes, scores, iou_threshold): """对预测边界框的置信度进行排序""" B = torch.argsort(scores, dim=-1, descending=True) keep = [] # 保留预测边界框的指标 while B.numel() > 0: i = B[0] keep.append(i) if B.numel() == 1: break iou = box_iou(boxes[i, :].reshape(-1, 4), boxes[B[1:], :].reshape(-1, 4)).reshape(-1) inds = torch.nonzero(iou |