|
本文又是一篇喂饭级教程,为大家展示通过 OceanBase seekdb 构建 RAG(检索增强生成)系统的详细步骤。
RAG 系统结合了检索系统和生成模型,可根据给定提示生成新文本。系统首先使用 seekdb 的原生向量搜索功能从语料库中检索相关文档,然后使用生成模型根据检索到的文档生成新文本。
前提条件
- 已安装 Python 3.11 或以上版本
- 已安装 uv
- 已准备好 LLM API Key
准备工作
克隆代码- git clone https://github.com/oceanbase/pyseekdb.git
- cd pyseekdb/demo/rag
复制代码设置环境
安装依赖
基础安装(适用于 default 或 api embedding 类型): 本地模型(适用于 local embedding 类型): 提示:
local 额外依赖包含 sentence-transformers 及相关依赖(约 2-3 GB)。
- 如果您在中国大陆,可以使用国内镜像源加速下载:
- 基础安装(清华源):
uv sync --index-url https://pypi.tuna.tsinghua.edu.cn/simple
- 基础安装(阿里源):
uv sync --index-url https://mirrors.aliyun.com/pypi/simple
- 本地模型(清华源):
uv sync --extra local --index-url https://pypi.tuna.tsinghua.edu.cn/simple
- 本地模型(阿里源):
uv sync --extra local --index-url https://mirrors.aliyun.com/pypi/simple
设置环境变量
步骤一:复制环境变量模板
cp .env.example .env
步骤二:编辑 .env 文件,设置环境变量
本系统支持三种 Embedding 函数类型,您可以根据需求选择:
default(默认,推荐新手使用)
- 使用 pyseekdb 自带的
DefaultEmbeddingFunction(基于 ONNX)
- 首次使用会自动下载模型,无需配置 API Key
- 适合本地开发和测试
local(本地模型)
- 使用自定义的
sentence-transformers 模型
- 需要安装
sentence-transformers 库
- 可配置模型名称和设备(CPU/GPU)
api(API 服务)
- 使用 OpenAI 兼容的 Embedding API(如 DashScope、OpenAI 等)
- 需要配置 API Key 和模型名称
- 适合生产环境
以下使用通义千问作为示例(使用 api 类型): - # Embedding Function 类型:api, local, default
- EMBEDDING_FUNCTION_TYPE=api
- # LLM 配置(用于生成答案)
- OPENAI_API_KEY=sk-your-dashscope-key
- OPENAI_BASE_URL=https://dashscope.aliyuncs.com/compatible-mode/v1
- OPENAI_MODEL_NAME=qwen-plus
- # Embedding API 配置(仅在 EMBEDDING_FUNCTION_TYPE=api 时需要)
- EMBEDDING_API_KEY=sk-your-dashscope-key
- EMBEDDING_BASE_URL=https://dashscope.aliyuncs.com/compatible-mode/v1
- EMBEDDING_MODEL_NAME=text-embedding-v4
- # 本地模型配置(仅在 EMBEDDING_FUNCTION_TYPE=local 时需要)
- SENTENCE_TRANSFORMERS_MODEL_NAME=all-mpnet-base-v2
- SENTENCE_TRANSFORMERS_DEVICE=cpu
- # seekdb 配置
- SEEKDB_DIR=./data/seekdb_rag
- SEEKDB_NAME=test
- COLLECTION_NAME=embeddings
复制代码环境变量说明:
| 变量名 |
说明 |
默认值/示例值 |
必需条件 |
| EMBEDDING_FUNCTION_TYPE |
Embedding 函数类型 |
default (可选:api , local , default ) |
必须设置 |
| OPENAI_API_KEY |
LLM API Key(支持 OpenAI、通义千问等兼容服务) |
必须设置 |
必须设置(用于生成答案) |
| OPENAI_BASE_URL |
LLM API 基础 URL |
https://dashscope.aliyuncs.com/compatible-mode/v1[1] |
可选 |
| OPENAI_MODEL_NAME |
语言模型名称 |
qwen-plus |
可选 |
| EMBEDDING_API_KEY |
Embedding API Key |
- |
EMBEDDING_FUNCTION_TYPE=api 时必需 |
| EMBEDDING_BASE_URL |
Embedding API 基础 URL |
https://dashscope.aliyuncs.com/compatible-mode/v1[2] |
EMBEDDING_FUNCTION_TYPE=api 时可选 |
| EMBEDDING_MODEL_NAME |
Embedding 模型名称 |
text-embedding-v4 |
EMBEDDING_FUNCTION_TYPE=api 时必需 |
| SENTENCE_TRANSFORMERS_MODEL_NAME |
本地模型名称 |
all-mpnet-base-v2 |
EMBEDDING_FUNCTION_TYPE=local 时可选 |
| SENTENCE_TRANSFORMERS_DEVICE |
运行设备 |
cpu |
EMBEDDING_FUNCTION_TYPE=local 时可选 |
| SEEKDB_DIR |
seekdb 数据库目录 |
./data/seekdb_rag |
可选 |
| SEEKDB_NAME |
数据库名称 |
test |
可选 |
| COLLECTION_NAME |
嵌入表名称 |
embeddings |
可选 |
提示:
- 如果使用
default 类型,只需配置 EMBEDDING_FUNCTION_TYPE=default 和 LLM 相关变量即可。
- 如果使用
api 类型,需要额外配置 Embedding API 相关变量。
- 如果使用
local 类型,需要安装 sentence-transformers 库,并可选择配置模型名称。
主要使用的模块
初始化 LLM 客户端
我们通过加载环境变量来初始化 LLM 客户端: - def get_llm_client() -> OpenAI:
- """Initialize LLM client using OpenAI-compatible API."""
- return OpenAI(
- api_key=os.getenv("OPENAI_API_KEY"),
- base_url=os.getenv("OPENAI_BASE_URL"),
- )
复制代码创建数据库连接- def get_seekdb_client(db_dir: str = "./seekdb_rag", db_name: str = "test"):
- """Initialize seekdb client (embedded mode)."""
- cache_key = (db_dir, db_name)
- if cache_key not in _client_cache:
- print(f"Connecting to seekdb: path={db_dir}, database={db_name}")
- _client_cache[cache_key] = Client(path=db_dir, database=db_name)
- print("seekdb client connected successfully")
- return _client_cache[cache_key]
复制代码自定义嵌入模型的工厂模式
在 .env 文件中可以通过配置 EMBEDDING_FUNCTION_TYPE 使用不同的 embedding_function。您也可以参考这个例子自定义您的 embedding_function。 - from pyseekdb import EmbeddingFunction, DefaultEmbeddingFunction
- from typing import List, Union
- import os
- from openai import OpenAI
- Documents = Union[str, List[str]]
- Embeddings = List[List[float]]
- class SentenceTransformerCustomEmbeddingFunction(EmbeddingFunction[Documents]):
- """
- A custom embedding function using sentence-transformers with a specific model.
- """
-
- def __init__(self, model_name: str = "all-mpnet-base-v2", device: str = "cpu"):# TODO: your own model name and device
- """
- Initialize the sentence-transformer embedding function.
-
- Args:
- model_name: Name of the sentence-transformers model to use
- device: Device to run the model on ('cpu' or 'cuda')
- """
- self.model_name = model_name or os.environ.get('SENTENCE_TRANSFORMERS_MODEL_NAME')
- self.device = device or os.environ.get('SENTENCE_TRANSFORMERS_DEVICE')
- self._model = None
- self._dimension = None
-
- def _ensure_model_loaded(self):
- """Lazy load the embedding model"""
- if self._model isNone:
- try:
- from sentence_transformers import SentenceTransformer
- self._model = SentenceTransformer(self.model_name, device=self.device)
- # Get dimension from model
- test_embedding = self._model.encode(["test"], convert_to_numpy=True)
- self._dimension = len(test_embedding[0])
- except ImportError:
- raise ImportError(
- "sentence-transformers is not installed. "
- "Please install it with: pip install sentence-transformers"
- )
-
- @property
- def dimension(self) -> int:
- """Get the dimension of embeddings produced by this function"""
- self._ensure_model_loaded()
- return self._dimension
-
- def __call__(self, input: Documents) -> Embeddings:
- """
- Generate embeddings for the given documents.
-
- Args:
- input: Single document (str) or list of documents (List[str])
-
- Returns:
- List of embedding vectors
- """
- self._ensure_model_loaded()
-
- # Handle single string input
- if isinstance(input, str):
- input = [input]
-
- # Handle empty input
- ifnot input:
- return []
-
- # Generate embeddings
- embeddings = self._model.encode(
- input,
- convert_to_numpy=True,
- show_progress_bar=False
- )
-
- # Convert numpy arrays to lists
- return [embedding.tolist() for embedding in embeddings]
- class OpenAIEmbeddingFunction(EmbeddingFunction[Documents]):
- """
- A custom embedding function using Embedding API.
- """
-
- def __init__(self, model_name: str = "", api_key: str = "", base_url: str = ""):
- """
- Initialize the Embedding API embedding function.
-
- Args:
- model_name: Name of the Embedding API embedding model
- api_key: Embedding API key (if not provided, uses EMBEDDING_API_KEY env var)
- """
- self.model_name = model_name or os.environ.get('EMBEDDING_MODEL_NAME')
- self.api_key = api_key or os.environ.get('EMBEDDING_API_KEY')
- self.base_url = base_url or os.environ.get('EMBEDDING_BASE_URL')
- self._dimension = None
- ifnot self.api_key:
- raise ValueError("Embedding API key is required")
- def _ensure_model_loaded(self):
- """Lazy load the Embedding API model"""
- try:
- client = OpenAI(
- api_key=self.api_key,
- base_url=self.base_url
- )
- response = client.embeddings.create(
- model=self.model_name,
- input=["test"]
- )
- self._dimension = len(response.data[0].embedding)
- except Exception as e:
- raise ValueError(f"Failed to load Embedding API model: {e}")
- @property
- def dimension(self) -> int:
- """Get the dimension of embeddings produced by this function"""
- self._ensure_model_loaded()
- return self._dimension
-
- def __call__(self, input: Documents) -> Embeddings:
- """
- Generate embeddings using Embedding API.
-
- Args:
- input: Single document (str) or list of documents (List[str])
-
- Returns:
- List of embedding vectors
- """
- # Handle single string input
- if isinstance(input, str):
- input = [input]
-
- # Handle empty input
- ifnot input:
- return []
-
- # Call Embedding API
- client = OpenAI(
- api_key=self.api_key,
- base_url=self.base_url
- )
- response = client.embeddings.create(
- model=self.model_name,
- input=input
- )
-
- # Extract Embedding API embeddings
- embeddings = [item.embedding for item in response.data]
- return embeddings
- def create_embedding_function() -> EmbeddingFunction:
- embedding_function_type = os.environ.get('EMBEDDING_FUNCTION_TYPE')
- if embedding_function_type == "api":
- print("Using OpenAI Embedding API embedding function")
- return OpenAIEmbeddingFunction()
- elif embedding_function_type == "local":
- print("Using SentenceTransformer embedding function")
- return SentenceTransformerCustomEmbeddingFunction()
- elif embedding_function_type == "default":
- print("Using Default embedding function")
- return DefaultEmbeddingFunction()
- else:
- raise ValueError(f"Unsupported embedding function type: {embedding_function_type}")
复制代码创建 Collection
在 get_or_create_collection() 方法中我们传入了 embedding_function,之后使用这个 collection 的 add() 和 query() 方法的时候就不需要传入向量了,只需传入文本,向量会由 embedding_function 自动生成。 - def get_seekdb_collection(client, collection_name: str = "embeddings",
- embedding_function: Optional[EmbeddingFunction] = DefaultEmbeddingFunction(),
- drop_if_exists: bool = True):
- """
- Get or create a collection using pyseekdb's get_or_create_collection.
-
- Args:
- client: seekdb client instance
- collection_name: Name of the collection
- embedding_function: Embedding function (required for automatic embedding generation)
- drop_if_exists: Whether to drop existing collection if it exists
-
- Returns:
- Collection object
- """
- if drop_if_exists and client.has_collection(collection_name):
- print(f"Collection '{collection_name}' already exists, deleting old data...")
- client.delete_collection(collection_name)
-
- if embedding_function isNone:
- raise ValueError("embedding_function is required")
-
- # Use pyseekdb's native get_or_create_collection
- collection = client.get_or_create_collection(
- name=collection_name,
- embedding_function=embedding_function
- )
-
- print(f"Collection '{collection_name}' ready!")
- return collection
复制代码核心插入数据函数- def insert_embeddings(collection, data: List[Dict[str, Any]]):
- """
- Insert data into collection. Embeddings are automatically generated by collection's embedding_function.
- Args:
- collection: Collection object (must have embedding_function configured)
- data: List of data dictionaries containing 'text', 'source_file', 'chunk_index'
- """
- try:
- ids = [f"{item['source_file']}_{item.get('chunk_index', 0)}"for item in data]
- documents = [item['text'] for item in data]
- metadatas = [{'source_file': item['source_file'],
- 'chunk_index': item.get('chunk_index', 0)} for item in data]
- # Collection's embedding_function will automatically generate embeddings from documents
- collection.add(
- ids=ids,
- documents=documents,
- metadatas=metadatas
- )
- print(f"Inserted {len(data)} items successfully")
- except Exception as e:
- print(f"Error inserting data: {e}")
- raise
复制代码向量相似度搜索- results = collection.query(
- query_texts=[question],
- n_results=3,
- include=["documents", "metadatas", "distances"]
- )
复制代码统计 Collection 中的数据情况- def get_database_stats(collection) -> Dict[str, Any]:
- """Get statistics about the collection."""
- try:
- results = collection.get(limit=10000, include=["metadatas"])
- ids = results.get('ids', []) if isinstance(results, dict) else []
- metadatas = results.get('metadatas', []) if isinstance(results, dict) else []
-
- unique_files = {m.get('source_file') for m in metadatas if m and m.get('source_file')}
-
- return {
- "total_embeddings": len(ids),
- "unique_source_files": len(unique_files)
- }
- except Exception as e:
- print(f"Error getting database stats: {e}")
- return {"total_embeddings": 0, "unique_source_files": 0}
复制代码构建 RAG 系统
本模块实现了 RAG 系统的检索功能。通过将用户提出的问题转换为嵌入向量,利用 seekdb 提供的原生向量搜索能力,快速检索出与问题最相关的文档片段,为后续的生成模型提供必要的上下文信息。
导入数据
我们使用 pyseekdb 的 SDK 文档作为示例,您也可以使用自己的 Markdown 文档或者目录。
运行数据导入脚本: - # 导入单个文档
- uv run python seekdb_insert.py ../../README.md
- # 或导入目录下的所有 Markdown 文档
- uv run python seekdb_insert.py path/to/your_dir
复制代码启动应用
在 pyseekdb/demo/rag 路径下执行如下命令,通过 Streamlit 启动应用: - uv run streamlit run seekdb_app.py --server.port your_port
复制代码使用 IP 和端口号(默认为 8501,可通过 --server.port 选项自定义)即可在浏览器中打开 RAG 界面。
提示: 如果使用 uv 作为包管理器,请在命令前加上 uv run 前缀,以确保使用正确的 Python 环境和依赖。
实际运行示例
以下是一个真实的查询示例,展示了 seekdb RAG 系统的实际效果:
用户问题:“What is seekdb's vector search?”
检索到的相关文档: - 1. 30.experience-vector-retrieval.md
- Vector search overview In today's era of information explosion, users often need to quickly retrieve the information they need from massive amounts o...
- 2. 20.using-seekdb-in-python-mode.md
- Experience vector search SeekDB supports up to 16,000 dimensions of float-type dense vectors, sparse vectors, and various types of vector distance ca...
- 3. 70.experience-hybrid-vector-index.md
- Summary Through this tutorial, you have mastered the core features of SeekDB's hybrid vector index: Simplified usage process: Achieve semantic ret...
复制代码使用 LLM 生成的答案:
SeekDB's vector search is a powerful feature that enables efficient and accurate retrieval of data by encoding various types of data—such as text, images, and audio—into mathematical vectors and performing searches in a vector space. This approach captures deep semantic relationships within the data, going beyond traditional keyword-based search methods to deliver more relevant results.
Key capabilities of SeekDB's vector search include:
- High-dimensional vector support: It supports up to 16,000 dimensions for float-type dense vectors and sparse vectors.
- Multiple distance metrics: It supports various similarity or distance calculations, including Manhattan distance, Euclidean distance, inner product, and cosine distance.
- Advanced indexing methods: Vector indexes can be created using HNSW (Hierarchical Navigable Small World) or IVF (Iterative Virtual File), enabling fast approximate nearest neighbor searches.
- Incremental updates: The system allows for real-time insertion and deletion of vectors without compromising search accuracy or recall.
- Hybrid search with scalar filtering: Users can combine vector similarity search with traditional attribute-based (scalar) filtering for more precise results.
- Flexible access interfaces: SeekDB supports SQL access via MySQL protocol clients in multiple programming languages, as well as a Python SDK.
- Automatic embedding and hybrid indexing: With hybrid vector index features, users can store raw text directly—the system automatically converts it into vectors and builds indexes.
In summary, SeekDB's vector search provides a comprehensive, high-performance solution for semantic search, particularly valuable in AI applications involving large-scale unstructured data.
这个示例展示了:
- ✅ 准确的信息检索:系统成功从文档中找到了相关信息
- ✅ 多文档整合:从 3 个不同文档中提取和整合信息
- ✅ 语义匹配:准确匹配了“vector search”相关的文档
- ✅ 结构化回答:AI 将检索到的信息整理成清晰的结构
- ✅ 完整性:涵盖了 seekdb 向量搜索的主要特性
- ✅ 专业性:回答包含了技术细节和实际应用价值
检索质量分析:
- 最相关文档 :
experience-vector-retrieval.md - 向量搜索概览
- 技术细节 :
using-seekdb-in-python-mode.md - 具体的技术规格
- 高级特性 :
experience-hybrid-vector-index.md - 混合向量索引功能
快速体验
如需快速体验 seekdb RAG 系统,请参考 快速部署[3]。
参考资料
[1]
https://dashscope.aliyuncs.com/compatible-mode/v1: https://dashscope.aliyuncs.com/compatible-mode/v1
[2]
https://dashscope.aliyuncs.com/compatible-mode/v1: https://dashscope.aliyuncs.com/compatible-mode/v1
[3]
快速部署: https://github.com/oceanbase/pyseekdb/blob/main/demo/rag/README_CN.md
[4]
seekdb 项目地址:https://github.com/oceanbase/seekdb 来源:程序园用户自行投稿发布,如果侵权,请联系站长删除 免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作! |