本篇我们讲红黑树的经典实现,Java中对红黑树的实现便采用的是经典红黑树。前一篇文章我们介绍过左倾红黑树,它相对来说比较简单,需要大家看完上篇再来看这一篇,因为旋转等基础知识不会再本篇文章中赘述。本篇的大部分内容参考 《算法导论》和 Java 实现红黑树的源码,希望大家能够有耐心的看完。
在正文开始之前我们先看如下问题:
关于红黑树和 AVL 树,大家可能看过“在最坏情况下,AVL 树和红黑树的查找次数都是对数级别的,虽然红黑树的系数更高一些,但是没有本质的区别,是可以容忍的。AVL 树最致命的地方在于删除节点时旋转次数是对数级别的,而红黑树最多只需要 3 次旋转,这导致了红黑树应用相比于 AVL 树要广泛得多”的观点,但实际上这并不是根本原因,根本原因是在以任意序列插入和删除操作混合进行的情况下,红黑树均摊时间复杂度保持在 O(1),而 AVL 树的均摊时间复杂度为 O(logn)。
经典红黑树与2-3-4搜索树 同构,它相比于左倾红黑树(2-3树)的实现,在维持红黑树平衡性开销更小。下文中我们会将经典红黑树简称为红黑树,开始吧:
2-3-4 搜索树
2-3-4搜索树是在2-3搜索树中增加了4-节点,在前文中已经介绍过4-节点,我们先来看一下2-3-4搜索树的样子:
新节点插入2-节点或3-节点的情况我们就不在这里赘述了,我们重点看一下新节点插入4-节点的情况。当有新节点插入的节点为4-节点时,需要先将4-节点转换成3个2-节点,再在其中的2-节点中执行插入操作,如下所示,其中黄色节点为新插入的节点,对应了插入4-节点中的四种情况:
我们再以情况(4)为例,在2-3-4搜索树中执行插入值为34的节点:
将4-节点转换成3个2-节点并完成插入新节点34后,需要将“根节点25”插入到父节点中,如上图所示。这和我们在前文中在2-3搜索树中讲到的基本类似,需要不断分解临时的5-节点,并将原来4-节点分解成3个2-节点的根节点插入到更高的父节点中,直到遇到2-节点或3-节点,将其转换成不需要继续分解的节点,如果最终插入到根节点后使其为5-节点,同样需要进行分解再插入的操作,完成后树高加一。
2-3-4树的插入操作使树本身的改变也是局部的,除了相关的节点和引用之外,不必修改和检查树的其他部分,这些局部变换不会影响到树的全局有序性和平衡性,在插入的过程中,2-3-4树始终是完美平衡二叉树。
经典红黑树
经典红黑树与2-3-4搜索树同构,如果我们把2-3-4搜索树样例转换成红黑树的话,会如下图所示(指向红色节点的链接我们同样也染成红色):
它满足如下性质:
- 节点颜色为红色或黑色
- 根节点是黑色的
- 叶子节点(null 节点)为黑色(null 节点在图中未画出来)
- 红色节点的两个子节点为黑色(不能出现连续的红色节点)
- 任意叶子节点到根节点路径上的黑色节点数量相同,即该树是黑色平衡的
黑色平衡这条性质我们在讲解左倾红黑树时已经讲过,在这里我们不厌其烦地再叙述一遍:2-3-4树始终能保持完美平衡,那么任意叶子节点到达根节点的距离是相等的,红黑树又是一颗2-3-4搜索树,其中的黑链接是2-3-4搜索树中的普通链接,那么红黑树中被黑色链接引用的黑色节点也必然是完美平衡的,所以任意叶子节点到根节点路径上的黑色节点数量必然相同。
下面我们结合图示和Java中 TreeMap 源码来讲解红黑树的插入和删除节点操作:
节点定义
- static final class Entry<K,V> implements Map.Entry<K,V> {
- K key;
- V value;
- Entry<K,V> left;
- Entry<K,V> right;
- Entry<K,V> parent;
- boolean color = BLACK;
- Entry(K key, V value, Entry<K,V> parent) {
- this.key = key;
- this.value = value;
- this.parent = parent;
- }
- // ...
- }
复制代码 我们可以发现节点定义除了有表示颜色信息和左右子节点的引用外,还增加了 parent 针对父节点的引用。
插入节点
插入2-节点
直接将节点插入2-节点的情况非常简单,如下图所示的两种情况,2-节点转换成3-节点:
插入3-节点
插入3-节点我们需要分左斜3-节点和右斜3-节点两种情况讨论:
- 插入左斜的3-节点的左节点或右节点,需要将其转换成4-节点,如下图所示:
- 插入右斜的3-节点的左节点或右节点,需要将其转换成4-节点,如下图所示:
插入4-节点
以上两种情况都是不会发生“向上合并”,如果插入的4-节点,需要将其分解成3个2-节点,之后将2-节点的“根节点”合并到它的父节点中(如果有的话),我们同样需要分情况讨论:
目前插入新节点的所有情况已经讨论完了,下面我们看一下 TreeMap 中的源码,大家注意其中的注释即可:- public V put(K key, V value) {
- Entry<K,V> t = root;
- // 插入第一个节点
- if (t == null) {
- compare(key, key);
- root >(key, value, null);
- size = 1;
- modCount++;
- return null;
- }
- int cmp;
- Entry<K,V> parent;
- // 根据比较器找到插入节点的位置
- Comparator<= comparator;
- if (cpr != null) {
- do {
- parent = t;
- cmp = cpr.compare(key, t.key);
- if (cmp 0)
- t = t.left;
- else if (cmp 0)
- t = t.right;
- else
- return t.setValue(value);
- } while (t != null);
- }
- else {
- if (key == null)
- throw new NullPointerException();
- @SuppressWarnings("unchecked")
- Comparable<= (Comparable<) key;
- do {
- parent = t;
- cmp = k.compareTo(t.key);
- if (cmp 0)
- t = t.left;
- else if (cmp 0)
- t = t.right;
- else
- return t.setValue(value);
- } while (t != null);
- }
- // 根据大小关系添加新的节点
- Entry<K,V> e >(key, value, parent);
- if (cmp 0)
- parent.left = e;
- else
- parent.right = e;
- // *插入之后修复平衡操作*
- fixAfterInsertion(e);
- size++;
- modCount++;
- return null;
- }
复制代码 fixAfterDeletion 为删除后再平衡方法,需要大家关注其中的注释信息:- private void fixAfterInsertion(Entry<K,V> x) {
- // 新插入的节点指定为红色
- x.color = RED;
- // 如果非空非根节点且有连续的红色节点出现,需要不断地修复平衡
- while (x != root .parent.color K,V> y = rightOf(parentOf(parentOf(x)));
- if (colorOf(y) == RED) {
- // 反色处理
- setColor(parentOf(x), BLACK);
- setColor(y, BLACK);
- setColor(parentOf(parentOf(x)), RED);
- // 处理父节点的父节点(因为该节点为红色,可能会发生向上合并的操作)
- x = parentOf(parentOf(x));
- } else {
- // 如下步骤对应插入3-节点的情况1
- // 插入的是3-节点的右节点
- if (x == rightOf(parentOf(x))) {
- x = parentOf(x);
- // 左旋父节点
- rotateLeft(x);
- }
- // 现在转换成了插入位置为3-节点的左节点,父节点染成黑色
- setColor(parentOf(x), BLACK);
- // 父节点的父节点为红色
- setColor(parentOf(parentOf(x)), RED);
- // 右旋父节点的父节点,转换成4-节点
- rotateRight(parentOf(parentOf(x)));
- }
- } else {
- // 插入节点后,出现连续红色的节点的位置在右侧
- Entry<K,V> y = leftOf(parentOf(parentOf(x)));
- // 插入的是4-节点,对应插入4-节点的情况2
- if (colorOf(y) == RED) {
- // 反色处理
- setColor(parentOf(x), BLACK);
- setColor(y, BLACK);
- setColor(parentOf(parentOf(x)), RED);
- // 处理父节点的父节点(因为该节点为红色,可能会发生向上合并的操作)
- x = parentOf(parentOf(x));
- } else {
- // 如下步骤对应插入3-节点的情况2
- // 插入的是3-节点的左节点
- if (x == leftOf(parentOf(x))) {
- x = parentOf(x);
- // 右旋父节点
- rotateRight(x);
- }
- // 转换成了插入位置为3-节点的右节点,父节点为黑色
- setColor(parentOf(x), BLACK);
- // 父节点的父节点为红色
- setColor(parentOf(parentOf(x)), RED);
- // 左旋父节点的父节点,转换成4-节点
- rotateLeft(parentOf(parentOf(x)));
- }
- }
- }
- // 根节点始终为黑色
- root.color = BLACK;
- }
复制代码 红黑树执行删除方法的时间复杂度是多少呢?含有 n 个节点的红黑树的高度为 logn,不调用fixAfterDeletion 方法时,复杂度为 O(logn),在 fixAfterDeletion 中,情况 1, 3, 4 在各执行常数次的颜色改变和至多 3 次旋转后便终止,只有在情况 2 中才可能重复修复平衡,指针也至多上升 O(logn) 次,且没有任何旋转操作,所以 fixAfterDeletion 复杂度为 O(logn),最多旋转 3 次,因此红黑树删除方法的时间复杂度为 O(logn)。
巨人的肩膀
- 《算法导论》:第 13 章 红黑树
- 知乎 - 关于AVL树和红黑树的一点看法
- LeetCode - 红黑树从入门到看开
- 博客园 - 红黑树的删除
- 作者:京东物流 王奕龙
来源:京东云开发者社区 自猿其说 Tech 转载请注明来源
来源:程序园用户自行投稿发布,如果侵权,请联系站长删除
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作! |