基于R语言的GD库实现地理探测器并自动将连续变量转为类别变量
本文介绍基于R语言中的GD包,依据栅格影像数据,实现自变量最优离散化方法选取与执行,并进行地理探测器(Geodetector)操作的方法。首先,在R语言中进行地理探测器操作,可通过geodetector包、GD包等2个包实现。其中,geodetector包是地理探测器模型的原作者团队开发的,其需要保证输入的自变量数据已经全部为类别数据;其具体操作方法大家可以参考地理探测器R语言实现:geodetector。而GD包则是另一位学者开发的,其可自动实现自变量数据的最优离散化方法选取与执行;本文介绍的就是基于GD包实现地理探测器的具体操作。此外,如果希望基于Excel实现地理探测器,大家可以参考地理探测器Geodetector下载、使用、结果分析方法。
1 包的安装与导入
首先,我们可以先到GD包在R语言中的官方网站,大致了解一下该包的简要介绍、开发团队等基本信息。
随后,我们开始GD包的下载与安装。输入如下所示的代码,即可开始包的下载与安装过程。
install.packages("GD") 输入代码后,按下回车键,运行代码;如下图所示。在安装GD包时,会自动将其所需依赖的其他包(如果在此之前没有配置过)都一并配置好,非常方便。
接下来,输入如下的代码,将GD包导入。
library("GD") 输入代码后,按下回车键,运行代码;如下图所示。
2 数据读取与预处理
接下来,我们需要读取栅格图像数据,并将其转为GD包可以识别的数据框(Data Frames)格式。
其中,读取栅格数据的方法,大家参考基于R语言的raster包读取遥感影像即可;关于数据格式的转换,大家参考地理探测器R语言实现:geodetector即可。这一部分的内容本文就不再赘述。
3 地理探测器执行
接下来,我们就可以开始地理探测器的具体分析;强烈建议大家基于GD包中的gdm()函数,实现一步到位的地理探测器分析操作。
首先,如果大家输入数据中的自变量数据具有连续变量,需要将其转换为类别变量;gdm()函数可以实现连续变量的离散化方式寻优与自动执行。其中,我们可以选择的离散化方式包括相等间隔法、自然间断点法、分位数分类法、几何间隔法与标准差法等5种不同的方法,分别对应以下第一句代码中的"equal"、"natural"、"quantile"、"geometric"与"sd"等5个选项。此外,我们还可以依据数据的特征,对自变量离散化的类别数量加以限定,具体代码如下所示。
discmethod
页:
[1]