眸胝 发表于 2025-9-30 08:05:39

期货市场API对接完全指南:实时行情获取与实战应用

期货市场API对接完全指南:实时行情获取与实战应用

本文详细介绍了如何通过API接口获取全球期货市场的实时行情数据,包含完整的代码示例、数据处理方法和实战应用场景。
一、期货API概述

期货市场是金融市场的重要组成部分,提供各种商品、金融指数和利率的标准化合约交易。通过期货API,开发者可以获取实时行情、历史数据、合约信息等关键数据,为量化交易、风险管理和市场分析提供支持。
主要期货API提供商对比


[*]Infoway API:提供全球主要期货市场的实时数据,支持RESTful和WebSocket接口
[*]Bloomberg:专业级金融数据服务,覆盖全面但成本较高
[*]Reuters:老牌金融信息提供商,数据准确性高
[*]Quandl:提供历史期货数据,适合回测和研究
[*]各交易所官方API:如CME、ICE等交易所提供的直接数据接口
[*]​​StockTV​​:提供外汇、股票、加密货币等多类金融数据API,无限制接调用次数。提供免费API密钥
二、API接口详解

2.1 期货合约标识

期货合约有特定的命名规则,通常包含:

[*]标的物代码(如CL代表原油)
[*]到期月份代码(F=1月,G=2月,...,Z=12月)
[*]到期年份(如2024年=4)
示例:CLZ4表示2024年12月到期的原油期货合约
2.2 核心API端点

# 基础URL结构
BASE_URL = "https://api.infoway.io/futures"

# 主要端点
ENDPOINTS = {
    "list": "/list",# 期货列表
    "quote": "/quote",# 实时行情
    "historical": "/historical",# 历史数据
    "kline": "/kline"# K线数据
}三、Python实现期货数据获取

3.1 基础配置与认证

import requests
import pandas as pd
import numpy as np
import time
from datetime import datetime, timedelta
import json

class FuturesAPI:
    def __init__(self, api_key, base_url="https://api.infoway.io/futures"):
      self.api_key = api_key
      self.base_url = base_url
      self.session = self._create_session()
   
    def _create_session(self):
      """创建带重试机制的会话"""
      session = requests.Session()
      retry_strategy = requests.packages.urllib3.util.retry.Retry(
            total=3,
            backoff_factor=0.3,
            status_forcelist=,
      )
      adapter = requests.adapters.HTTPAdapter(max_retries=retry_strategy)
      session.mount("http://", adapter)
      session.mount("https://", adapter)
      return session
   
    def _make_request(self, endpoint, params=None):
      """发起API请求"""
      url = f"{self.base_url}{endpoint}"
      headers = {
            "Authorization": f"Bearer {self.api_key}",
            "Content-Type": "application/json"
      }
      
      try:
            response = self.session.get(
                url,
                headers=headers,
                params=params,
                timeout=10
            )
            response.raise_for_status()
            return response.json()
      except requests.exceptions.RequestException as e:
            print(f"API请求失败: {e}")
            return None3.2 获取期货列表

def get_futures_list(self, exchange=None, category=None):
    """
    获取期货合约列表
   
    Args:
      exchange: 交易所代码(可选)
      category: 品种类别(可选)
    """
    params = {}
    if exchange:
      params["exchange"] = exchange
    if category:
      params["category"] = category
   
    data = self._make_request("/list", params)
    if data and data.get("code") == 200:
      return data.get("data", [])
    return []

# 使用示例
api = FuturesAPI("your_api_key")
futures_list = api.get_futures_list(exchange="CME", category="energy")
print(f"找到 {len(futures_list)} 个期货合约")3.3 获取实时行情

def get_realtime_quotes(self, symbols):
    """
    获取实时行情数据
   
    Args:
      symbols: 合约代码列表
    """
    if not symbols:
      return []
   
    if isinstance(symbols, str):
      symbols =
   
    params = {"symbols": ",".join(symbols)}
    data = self._make_request("/quote", params)
   
    if data and data.get("code") == 200:
      return self._parse_quotes(data.get("data", []))
    return []

def _parse_quotes(self, quotes_data):
    """解析行情数据"""
    parsed_data = []
    for item in quotes_data:
      parsed = {
            "symbol": item.get("symbol"),
            "name": item.get("name"),
            "last_price": float(item.get("last_price", 0)),
            "change": float(item.get("chg", 0)),
            "change_percent": float(item.get("chg_pct", 0)),
            "open": float(item.get("open_price", 0)),
            "high": float(item.get("high_price", 0)),
            "low": float(item.get("low_price", 0)),
            "prev_close": float(item.get("prev_price", 0)),
            "volume": int(item.get("volume", 0)),
            "timestamp": item.get("time"),
            "exchange": item.get("exchange")
      }
      parsed_data.append(parsed)
    return parsed_data

# 使用示例
quotes = api.get_realtime_quotes(["CLZ4", "GCZ4", "ESZ4"])
for quote in quotes:
    print(f"{quote['symbol']}: {quote['last_price']} ({quote['change_percent']:.2f}%)")3.4 获取K线数据

def get_kline_data(self, symbol, interval="1d", limit=100, start_time=None, end_time=None):
    """
    获取K线数据
   
    Args:
      symbol: 合约代码
      interval: 时间间隔 (1m, 5m, 15m, 30m, 1h, 4h, 1d)
      limit: 数据条数
      start_time: 开始时间(时间戳)
      end_time: 结束时间(时间戳)
    """
    params = {
      "symbol": symbol,
      "interval": interval,
      "limit": limit
    }
   
    if start_time:
      params["startTime"] = start_time
    if end_time:
      params["endTime"] = end_time
   
    data = self._make_request("/kline", params)
   
    if data and data.get("code") == 200:
      return self._parse_kline(data.get("data", []))
    return []

def _parse_kline(self, kline_data):
    """解析K线数据"""
    df_data = []
    for item in kline_data:
      df_data.append({
            "timestamp": item.get("timestamp"),
            "datetime": datetime.fromtimestamp(item.get("timestamp", 0)),
            "open": float(item.get("open", 0)),
            "high": float(item.get("high", 0)),
            "low": float(item.get("low", 0)),
            "close": float(item.get("close", 0)),
            "volume": float(item.get("volume", 0)),
            "turnover": float(item.get("turnover", 0))
      })
   
    return pd.DataFrame(df_data)

# 使用示例
kline_data = api.get_kline_data("CLZ4", interval="1h", limit=100)
print(kline_data.head())四、WebSocket实时数据流

对于需要实时数据的应用,WebSocket是更好的选择:
import websockets
import asyncio
import json

class FuturesWebSocketClient:
    def __init__(self, api_key):
      self.api_key = api_key
      self.ws_url = "wss://api.infoway.io/futures/ws"
      self.connected = False
      self.callbacks = []
   
    async def connect(self):
      """建立WebSocket连接"""
      try:
            self.connection = await websockets.connect(
                f"{self.ws_url}?apikey={self.api_key}"
            )
            self.connected = True
            print("WebSocket连接已建立")
            
            # 启动消息处理任务
            asyncio.create_task(self._message_handler())
            
      except Exception as e:
            print(f"连接失败: {e}")
   
    async def subscribe(self, symbols, data_type="quote"):
      """订阅期货数据"""
      if not self.connected:
            print("未建立连接")
            return False
      
      subscribe_msg = {
            "action": "subscribe",
            "symbols": symbols if isinstance(symbols, list) else ,
            "type": data_type
      }
      
      try:
            await self.connection.send(json.dumps(subscribe_msg))
            print(f"已订阅: {symbols}")
            return True
      except Exception as e:
            print(f"订阅失败: {e}")
            return False
   
    async def _message_handler(self):
      """处理接收到的消息"""
      while self.connected:
            try:
                message = await self.connection.recv()
                data = json.loads(message)
                await self._process_message(data)
            except websockets.exceptions.ConnectionClosed:
                print("连接已关闭")
                break
            except Exception as e:
                print(f"处理消息错误: {e}")
   
    async def _process_message(self, data):
      """处理实时数据"""
      # 调用所有注册的回调函数
      for callback in self.callbacks:
            try:
                await callback(data)
            except Exception as e:
                print(f"回调函数执行错误: {e}")
   
    def add_callback(self, callback):
      """添加消息回调函数"""
      self.callbacks.append(callback)
   
    async def disconnect(self):
      """断开连接"""
      if self.connected:
            await self.connection.close()
            self.connected = False

# 使用示例
async def example_usage():
    client = FuturesWebSocketClient("your_api_key")
    await client.connect()
   
    # 添加数据处理回调
    async def handle_data(data):
      print(f"收到数据: {data}")
   
    client.add_callback(handle_data)
   
    # 订阅数据
    await client.subscribe(["CLZ4", "GCZ4"])
   
    # 保持连接
    try:
      await asyncio.Future()# 永久运行
    except KeyboardInterrupt:
      await client.disconnect()

# 运行示例
# asyncio.run(example_usage())五、数据处理与分析

5.1 数据清洗与转换

class FuturesDataProcessor:
    @staticmethod
    def clean_data(df):
      """清洗期货数据"""
      # 去除空值
      df_clean = df.dropna()
      
      # 处理异常值
      for col in ['open', 'high', 'low', 'close']:
            q1 = df_clean.quantile(0.25)
            q3 = df_clean.quantile(0.75)
            iqr = q3 - q1
            lower_bound = q1 - 1.5 * iqr
            upper_bound = q3 + 1.5 * iqr
            
            df_clean = df_clean[
                (df_clean >= lower_bound) &
                (df_clean <= upper_bound)
            ]
      
      return df_clean
   
    @staticmethod
    def calculate_technical_indicators(df):
      """计算技术指标"""
      df = df.copy()
      
      # 移动平均线
      df['ma5'] = df['close'].rolling(window=5).mean()
      df['ma20'] = df['close'].rolling(window=20).mean()
      
      # 相对强弱指数(RSI)
      delta = df['close'].diff()
      gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
      loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
      rs = gain / loss
      df['rsi'] = 100 - (100 / (1 + rs))
      
      # 布林带
      df['bb_middle'] = df['close'].rolling(window=20).mean()
      bb_std = df['close'].rolling(window=20).std()
      df['bb_upper'] = df['bb_middle'] + 2 * bb_std
      df['bb_lower'] = df['bb_middle'] - 2 * bb_std
      
      return df5.2 数据可视化

import matplotlib.pyplot as plt
import seaborn as sns

class FuturesVisualizer:
    @staticmethod
    def plot_price_with_indicators(df, symbol):
      """绘制价格和技术指标"""
      fig, axes = plt.subplots(3, 1, figsize=(12, 10))
      
      # 价格和移动平均线
      axes.plot(df['datetime'], df['close'], label='Close Price')
      axes.plot(df['datetime'], df['ma5'], label='5MA', alpha=0.7)
      axes.plot(df['datetime'], df['ma20'], label='20MA', alpha=0.7)
      axes.set_title(f'{symbol} Price and Moving Averages')
      axes.legend()
      axes.grid(True, alpha=0.3)
      
      # RSI
      axes.plot(df['datetime'], df['rsi'], label='RSI', color='orange')
      axes.axhline(70, linestyle='--', alpha=0.3, color='red')
      axes.axhline(30, linestyle='--', alpha=0.3, color='green')
      axes.set_title('RSI Indicator')
      axes.set_ylim(0, 100)
      axes.legend()
      axes.grid(True, alpha=0.3)
      
      # 成交量
      axes.bar(df['datetime'], df['volume'], alpha=0.7, color='purple')
      axes.set_title('Volume')
      axes.grid(True, alpha=0.3)
      
      plt.tight_layout()
      plt.savefig(f'{symbol}_analysis.png', dpi=300, bbox_inches='tight')
      plt.show()
   
    @staticmethod
    def plot_correlation_matrix(symbols_data):
      """绘制相关性矩阵"""
      closes = pd.DataFrame()
      for symbol, df in symbols_data.items():
            closes = df['close']
      
      correlation = closes.corr()
      
      plt.figure(figsize=(10, 8))
      sns.heatmap(correlation, annot=True, cmap='coolwarm', center=0)
      plt.title('Futures Correlation Matrix')
      plt.tight_layout()
      plt.savefig('futures_correlation.png', dpi=300, bbox_inches='tight')
      plt.show()

# 使用示例
processor = FuturesDataProcessor()
visualizer = FuturesVisualizer()

# 数据处理
cleaned_data = processor.clean_data(kline_data)
indicators_data = processor.calculate_technical_indicators(cleaned_data)

# 可视化
visualizer.plot_price_with_indicators(indicators_data, "CLZ4")六、实战应用场景

6.1 期货价格监控系统

class FuturesMonitor:
    def __init__(self, api_client, alert_rules):
      self.api_client = api_client
      self.alert_rules = alert_rules
      self.price_history = {}
   
    async def start_monitoring(self, symbols, interval=60):
      """启动监控"""
      print("启动期货价格监控...")
      
      while True:
            try:
                quotes = self.api_client.get_realtime_quotes(symbols)
                for quote in quotes:
                  await self._check_alerts(quote)
               
                # 记录历史价格
                for quote in quotes:
                  symbol = quote['symbol']
                  if symbol not in self.price_history:
                        self.price_history = []
                  self.price_history.append({
                        'timestamp': datetime.now(),
                        'price': quote['last_price']
                  })
               
                # 保持最近100条记录
                for symbol in self.price_history:
                  if len(self.price_history) > 100:
                        self.price_history = self.price_history[-100:]
               
                await asyncio.sleep(interval)
               
            except Exception as e:
                print(f"监控错误: {e}")
                await asyncio.sleep(5)# 错误后等待5秒再重试
   
    async def _check_alerts(self, quote):
      """检查警报条件"""
      symbol = quote['symbol']
      
      if symbol in self.alert_rules:
            rules = self.alert_rules
            current_price = quote['last_price']
            
            # 检查价格突破
            if 'price_breakout' in rules:
                breakout_level = rules['price_breakout']
                if current_price >= breakout_level['upper']:
                  await self._trigger_alert(
                        symbol,
                        f"价格突破上限: {current_price} >= {breakout_level['upper']}",
                        "high"
                  )
                elif current_price <= breakout_level['lower']:
                  await self._trigger_alert(
                        symbol,
                        f"价格突破下限: {current_price} <= {breakout_level['lower']}",
                        "low"
                  )
            
            # 检查涨跌幅
            if 'change_alert' in rules:
                change_percent = abs(quote['change_percent'])
                if change_percent >= rules['change_alert']:
                  await self._trigger_alert(
                        symbol,
                        f"大幅波动: {change_percent:.2f}%",
                        "volatility"
                  )
   
    async def _trigger_alert(self, symbol, message, alert_type):
      """触发警报"""
      timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
      alert_msg = f"[{timestamp}] {symbol} {message}"
      
      print(f"ALERT: {alert_msg}")
      
      # 这里可以集成邮件、短信等通知方式
      # await self._send_email_alert(alert_msg)
      # await self._send_sms_alert(alert_msg)

# 使用示例
alert_rules = {
    "CLZ4": {
      "price_breakout": {
            "upper": 80.00,
            "lower": 75.00
      },
      "change_alert": 2.0# 2%
    },
    "GCZ4": {
      "price_breakout": {
            "upper": 2000.00,
            "lower": 1950.00
      },
      "change_alert": 1.5# 1.5%
    }
}

monitor = FuturesMonitor(api, alert_rules)
# asyncio.run(monitor.start_monitoring(["CLZ4", "GCZ4"]))6.2 简单的趋势跟踪策略

class TrendFollowingStrategy:
    def __init__(self, api_client, symbols):
      self.api_client = api_client
      self.symbols = symbols
      self.positions = {}
   
    async def run_strategy(self):
      """运行趋势跟踪策略"""
      print("启动趋势跟踪策略...")
      
      while True:
            try:
                for symbol in self.symbols:
                  # 获取历史数据计算指标
                  data = self.api_client.get_kline_data(symbol, "1h", 50)
                  if len(data) < 20:# 确保有足够的数据
                        continue
                  
                  # 计算技术指标
                  data = FuturesDataProcessor.calculate_technical_indicators(data)
                  
                  # 生成交易信号
                  signal = self._generate_signal(data, symbol)
                  
                  if signal != "hold":
                        await self._execute_trade(symbol, signal, data.iloc[-1]['close'])
               
                await asyncio.sleep(3600)# 每小时检查一次
               
            except Exception as e:
                print(f"策略执行错误: {e}")
                await asyncio.sleep(300)# 错误后等待5分钟
   
    def _generate_signal(self, data, symbol):
      """生成交易信号"""
      current_close = data.iloc[-1]['close']
      ma20 = data.iloc[-1]['ma20']
      ma5 = data.iloc[-1]['ma5']
      rsi = data.iloc[-1]['rsi']
      
      # 简单的趋势跟踪逻辑
      if ma5 > ma20 and rsi < 70:# 上升趋势且不过热
            return "buy"
      elif ma5 < ma20 and rsi > 30:# 下降趋势且不超卖
            return "sell"
      else:
            return "hold"
   
    async def _execute_trade(self, symbol, signal, price):
      """执行交易"""
      # 这里只是示例,实际交易需要连接交易API
      print(f"{datetime.now()} - {signal.upper()} {symbol} @ {price:.2f}")
      
      # 更新持仓
      if signal == "buy":
            self.positions = {
                "entry_price": price,
                "entry_time": datetime.now(),
                "direction": "long"
            }
      elif signal == "sell" and symbol in self.positions:
            position = self.positions
            pnl = price - position["entry_price"] if position["direction"] == "long" else position["entry_price"] - price
            print(f"平仓盈亏: {pnl:.2f}")
            del self.positions

# 使用示例
strategy = TrendFollowingStrategy(api, ["CLZ4", "GCZ4"])
# asyncio.run(strategy.run_strategy())七、注意事项与最佳实践

7.1 错误处理与重试机制

def robust_api_call(func):
    """API调用重试装饰器"""
    def wrapper(*args, **kwargs):
      max_retries = 3
      retry_delay = 1
      
      for attempt in range(max_retries):
            try:
                return func(*args, **kwargs)
            except requests.exceptions.ConnectionError as e:
                if attempt == max_retries - 1:
                  raise e
                print(f"连接错误,{retry_delay}秒后重试...")
                time.sleep(retry_delay)
                retry_delay *= 2# 指数退避
            except requests.exceptions.Timeout as e:
                if attempt == max_retries - 1:
                  raise e
                print(f"请求超时,{retry_delay}秒后重试...")
                time.sleep(retry_delay)
            except Exception as e:
                print(f"API调用错误: {e}")
                raise e
    return wrapper7.2 数据缓存策略

from functools import lru_cache
from datetime import datetime, timedelta

class DataCache:
    def __init__(self, ttl=300):# 默认5分钟缓存
      self.cache = {}
      self.ttl = ttl
   
    @lru_cache(maxsize=128)
    def get_cached_data(self, key, data_func, *args, **kwargs):
      """带缓存的数据获取"""
      current_time = datetime.now()
      
      if key in self.cache:
            data, timestamp = self.cache
            if (current_time - timestamp).total_seconds() < self.ttl:
                return data
      
      # 缓存不存在或已过期
      new_data = data_func(*args, **kwargs)
      if new_data is not None:
            self.cache = (new_data, current_time)
      
      return new_data

# 使用示例
cache = DataCache(ttl=300)# 5分钟缓存

# 带缓存的API调用
cached_data = cache.get_cached_data(
    "CLZ4_1h_100",
    api.get_kline_data,
    "CLZ4", "1h", 100
)八、总结

本文详细介绍了期货市场API的对接方法,涵盖了从基础的数据获取到高级的应用场景。通过合理的错误处理、数据缓存和实时监控,可以构建稳定可靠的期货数据应用系统。
关键要点:


[*]选择合适的API提供商:根据需求选择功能、成本和稳定性合适的API服务
[*]实现健壮的错误处理:网络不稳定是常态,必须要有完善的重试机制
[*]合理使用缓存:对不经常变化的数据实施缓存,减少API调用次数
[*]实时监控与警报:对于交易应用,实时监控和及时警报至关重要
[*]数据处理与分析:原始数据需要经过清洗和转换才能用于分析和决策
期货市场数据具有高度的实时性和复杂性,在实际应用中需要根据具体需求不断完善和优化系统架构。
提示:本文示例代码仅供参考,实际使用时请替换为有效的API密钥,并遵守API提供商的使用条款。期货交易有风险,请谨慎决策。

来源:程序园用户自行投稿发布,如果侵权,请联系站长删除
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!
页: [1]
查看完整版本: 期货市场API对接完全指南:实时行情获取与实战应用