固拆棚 发表于 2025-9-28 18:40:27

UniswapV2Periphery 源码学习

Periphery是uniswap的外围合约,将core合约封装起来提供给外部调用,比如我们在网页操作Swap时,请求的就是Periphery的合约。
Periphery里面写了Migrator和Router两个合约,其中Migrator是迁移合约,将流动性从Uniswap的V1版本迁移到V2版本,不涉及swap的功能,这里就不写了。
Router合约

    using SafeMath for uint;

    address public immutable override factory;
    address public immutable override WETH;

    modifier ensure(uint deadline) {
      require(deadline >= block.timestamp, 'UniswapV2Router: EXPIRED');
      _;
    }

    constructor(address _factory, address _WETH) public {
      factory = _factory;
      WETH = _WETH;
    }

    receive() external payable {
      assert(msg.sender == WETH); // only accept ETH via fallback from the WETH contract
    }从基础部分开始看起,router合约中记录了factory和WETH地址,其中factory用于获取pair和创建新的pair合约,而特别记录下WETH的地址是为了支持以太坊链的主网币ETH。
Uniswap中的代币操作都是基于ERC20类型,但是ETH本身既不是ERC20,也没有合约地址,因此为了ETH也能参与swap,需要先将ETH转换成WETH,再进行后续的操作。Uniswap为了减少用户手动转换的麻烦,会在有ETH参与的交易中自动执行ETH与WETH的相互转换,因此需要记录下WETH的合约地址。
receive方法中限制了只允许接收来自WETH合约的ETH,即调用withdraw方法取出ETH,除此之外不可直接向合约中转入ETH。
addLiquidity

addLiquidity是向合约添加流动性的方法,其主要逻辑在_addLiquidity中,根据用户提供的token数量,再根据流动性池中已有的token数量,计算出实际参与添加流动性的token数量,返回两个uint值:
function _addLiquidity(
    address tokenA,
    address tokenB,
    uint amountADesired,
    uint amountBDesired,
    uint amountAMin,
    uint amountBMin
) internal virtual returns (uint amountA, uint amountB) {
    // create the pair if it doesn't exist yet
    if (IUniswapV2Factory(factory).getPair(tokenA, tokenB) == address(0)) {
      IUniswapV2Factory(factory).createPair(tokenA, tokenB);
    }
    (uint reserveA, uint reserveB) = UniswapV2Library.getReserves(factory, tokenA, tokenB);
    if (reserveA == 0 && reserveB == 0) {
      (amountA, amountB) = (amountADesired, amountBDesired);
    } else {
      uint amountBOptimal = UniswapV2Library.quote(amountADesired, reserveA, reserveB);
      if (amountBOptimal <= amountBDesired) {
            require(amountBOptimal >= amountBMin, 'UniswapV2Router: INSUFFICIENT_B_AMOUNT');
            (amountA, amountB) = (amountADesired, amountBOptimal);
      } else {
            uint amountAOptimal = UniswapV2Library.quote(amountBDesired, reserveB, reserveA);
            assert(amountAOptimal <= amountADesired);
            require(amountAOptimal >= amountAMin, 'UniswapV2Router: INSUFFICIENT_A_AMOUNT');
            (amountA, amountB) = (amountAOptimal, amountBDesired);
      }
    }
}第一步判断交易对是否存在,如果不存在那么调用facotry创建一个新的交易对。
如果此时流动性池为空,那么用户提供的数量就是最后实际添加到池子中的数量,无需进一步计算;但如果池子非空,就需要通过UniswapV2Library中的quote方法去计算合理的数量。
quote方法如下:
function quote(uint amountA, uint reserveA, uint reserveB) internal pure returns (uint amountB) {
    require(amountA > 0, 'UniswapV2Library: INSUFFICIENT_AMOUNT');
    require(reserveA > 0 && reserveB > 0, 'UniswapV2Library: INSUFFICIENT_LIQUIDITY');
    amountB = amountA.mul(reserveB) / reserveA;
}逻辑很简单,就是根据A和B当前数量的比值,计算新增数量的A需要匹配多少数量的B,保证最终池子内A与B的比值不变。
回到_addLiquidity的逻辑,先根据A传入的数量去计算出需要多少相匹配的B,如果传入的B数量满足,那么就以amountADesired, amountBOptimal作为最后添加到流动性池子的数量;如果不满足,说明B相对池子的数量较少,那么就以B的数量为基准,反过来去计算所需要A的数量。在计算中,还需要满足amountMin的限制。
了解了主要逻辑之后,再回归到addLiquidity方法本身就很简单了:
function addLiquidity(
    address tokenA,
    address tokenB,
    uint amountADesired,
    uint amountBDesired,
    uint amountAMin,
    uint amountBMin,
    address to,
    uint deadline
) external virtual override ensure(deadline) returns (uint amountA, uint amountB, uint liquidity) {
    (amountA, amountB) = _addLiquidity(tokenA, tokenB, amountADesired, amountBDesired, amountAMin, amountBMin);
    address pair = UniswapV2Library.pairFor(factory, tokenA, tokenB);
    TransferHelper.safeTransferFrom(tokenA, msg.sender, pair, amountA);
    TransferHelper.safeTransferFrom(tokenB, msg.sender, pair, amountB);
    liquidity = IUniswapV2Pair(pair).mint(to);
}pairFor方法就是之前提到过的唯一pair地址生成器,根据factory,tokenA和tokenB的地址就能生成对应的pair地址,无需去factory中查询。
safeTransferFrom是uniswap封装的转账方法,因为标准的ERC20实现中tranferFrom要求返回bool,但是实际有许多代币在实现的时候并没有遵守这一规则,导致返回内容各不相同,还可能不返回,因此通过底层调用的绕过类型检查的限制,并且手动根据返回的data元数据进行判断调用是否成功,保证了对不同token的兼容。
function safeTransferFrom(
    address token,
    address from,
    address to,
    uint256 value
) internal {
    // bytes4(keccak256(bytes('transferFrom(address,address,uint256)')));
    (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0x23b872dd, from, to, value));
    require(
      success && (data.length == 0 || abi.decode(data, (bool))),
      'TransferHelper::transferFrom: transferFrom failed'
    );
}addLiquidityETH

addLiquidityETH的使用场景是交易中存在一方为ETH的时候,需要执行前面提到的WETH转换操作,并且ETH是通过msg.Value的形式传递的,所以对于多余的部分,需要手动执行退回。
function addLiquidityETH(
    address token,
    uint amountTokenDesired,
    uint amountTokenMin,
    uint amountETHMin,
    address to,
    uint deadline
) external virtual override payable ensure(deadline) returns (uint amountToken, uint amountETH, uint liquidity) {
    (amountToken, amountETH) = _addLiquidity(
      token,
      WETH,
      amountTokenDesired,
      msg.value,
      amountTokenMin,
      amountETHMin
    );
    address pair = UniswapV2Library.pairFor(factory, token, WETH);
    TransferHelper.safeTransferFrom(token, msg.sender, pair, amountToken);
    IWETH(WETH).deposit{value: amountETH}();
    assert(IWETH(WETH).transfer(pair, amountETH));
    liquidity = IUniswapV2Pair(pair).mint(to);
    // refund dust eth, if any
    if (msg.value > amountETH) TransferHelper.safeTransferETH(msg.sender, msg.value - amountETH);
}removeLiquidity

removeLiquidity的基本逻辑:

[*]获取交易对Pair
[*]将sender的LP token发送到Pair
[*]调用burn方法,销毁LP token,将两种token发回给用户,并得到tokenA和tokenB的数量
[*]保证数量满足min的要求
function removeLiquidity(
    address tokenA,
    address tokenB,
    uint liquidity,
    uint amountAMin,
    uint amountBMin,
    address to,
    uint deadline
) public virtual override ensure(deadline) returns (uint amountA, uint amountB) {
    address pair = UniswapV2Library.pairFor(factory, tokenA, tokenB);
    IUniswapV2Pair(pair).transferFrom(msg.sender, pair, liquidity); // send liquidity to pair
    (uint amount0, uint amount1) = IUniswapV2Pair(pair).burn(to);
    (address token0,) = UniswapV2Library.sortTokens(tokenA, tokenB);
    (amountA, amountB) = tokenA == token0 ? (amount0, amount1) : (amount1, amount0);
    require(amountA >= amountAMin, 'UniswapV2Router: INSUFFICIENT_A_AMOUNT');
    require(amountB >= amountBMin, 'UniswapV2Router: INSUFFICIENT_B_AMOUNT');
}removeLiquidityETH

removeLiquidityETH同样是用于ETH参与交易对的场景,可以看到这里直接调用了removeLiquidity,但调用的时候to参数传的是路由合约的地址address(this),这意味着burn取回流动性之后,代币会先发送到路由合约上。因此下面的逻辑补上了从路由合约将token和ETH转回到to地址的过程。
function removeLiquidityETH(
    address token,
    uint liquidity,
    uint amountTokenMin,
    uint amountETHMin,
    address to,
    uint deadline
) public virtual override ensure(deadline) returns (uint amountToken, uint amountETH) {
    (amountToken, amountETH) = removeLiquidity(
      token,
      WETH,
      liquidity,
      amountTokenMin,
      amountETHMin,
      address(this),
      deadline
    );
    TransferHelper.safeTransfer(token, to, amountToken);
    IWETH(WETH).withdraw(amountETH);
    TransferHelper.safeTransferETH(to, amountETH);
}这么写是因为:

[*]需要处理WETH和ETH的转换,因此必须将WETH先取出,存到路由合约中
[*]复用了removeLiquidity逻辑,简化代码
其他remove

uniswap中还支持了removeLiquidityWithPermit和removeLiquidityETHSupportingFeeOnTransferTokens这两种类型,其中WithPermit是基于EIP712实现的链下签名代执行的方法,而SupportingFeeOnTransferTokens则是支持特殊的ERC20token,这种token会在交易的过程中收取手续费或者燃烧,因为不涉及核心逻辑,所以就不深入了。
swap

swap有四种类型:

[*]swapExactTokensForTokens,拿指定数量的A换B
[*]swapTokensForExactTokens,拿A换指定数量的B
[*]swapExactETHForTokens,拿指定数量的ETH换token
[*]swapTokensForExactETH,拿ETH换指定数量的token
可以看到,关键的区别在于先确定输入还是先确定输出,以及是否有ETH的参与。
以swapExactTokensForTokens为例:
function swapExactTokensForTokens(
    uint amountIn,
    uint amountOutMin,
    address[] calldata path,
    address to,
    uint deadline
) external virtual override ensure(deadline) returns (uint[] memory amounts) {
    amounts = UniswapV2Library.getAmountsOut(factory, amountIn, path);
    require(amounts >= amountOutMin, 'UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT');
    TransferHelper.safeTransferFrom(
      path, msg.sender, UniswapV2Library.pairFor(factory, path, path), amounts
    );
    _swap(amounts, path, to);
}path是token转换的路径,因为对于用户想要提供A换取B的场景, 可能没有现成的A-B池子,那么就需要一条路径,先将A换成C,再从C换成B,最典型的C就是WETH,因为绝大部分的代币都会优先提供和WETH组成的交易对,那么只要通过WETH,基本上就可以实现任意两种代币的兑换。
根据path可以得到amounts,即转换路径上每种代币应有的数量,因为这里是已知输入的方法,所以用到了getAmountsOut方法:
function getAmountsOut(address factory, uint amountIn, address[] memory path) internal view returns (uint[] memory amounts) {
    require(path.length >= 2, 'UniswapV2Library: INVALID_PATH');
    amounts = new uint[](path.length);
    amounts = amountIn;
    for (uint i; i < path.length - 1; i++) {
      (uint reserveIn, uint reserveOut) = getReserves(factory, path, path);
      amounts = getAmountOut(amounts, reserveIn, reserveOut);
    }
}

function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) internal pure returns (uint amountOut) {
      require(amountIn > 0, 'UniswapV2Library: INSUFFICIENT_INPUT_AMOUNT');
      require(reserveIn > 0 && reserveOut > 0, 'UniswapV2Library: INSUFFICIENT_LIQUIDITY');
      uint amountInWithFee = amountIn.mul(997);
      uint numerator = amountInWithFee.mul(reserveOut);
      uint denominator = reserveIn.mul(1000).add(amountInWithFee);
      amountOut = numerator / denominator;
}getAmountsOut即轮询path中的代币组合,模拟token的swap;getAmountOut是对于已知reserve的pair,提供amountIn得到amountOut。
getAmountOut中是以下数学逻辑的实现:
交换前:x × y = k
交换后:(x + Δx) × (y - Δy) = k
因为k是常数,所以:
x × y = (x + Δx) × (y - Δy)
展开:
x × y = x × y - x × Δy + Δx × y - Δx × Δy
简化:
0 = -x × Δy + Δx × y - Δx × Δy
x × Δy = Δx × y - Δx × Δy
x × Δy = Δx × (y - Δy)
求解Δy:
Δy = (Δx × y) / (x + Δx)
也就是amountOut = (amountIn × reserveOut) / (reserveIn + amountIn)。
因为uniswap中会收取0.3%的手续费,所以实际的amountIn是 amountIn *997/100,为了避免浮点数运算,分子分母都乘以1000,最终得到amountOut = (amountIn × 997 × reserveOut) / (reserveIn × 1000 + amountIn × 997)。
计算出amounts后,将input token发送到即path和path组成的流动性池,调用_swap进行链式的交换,直到最终得到output。
function _swap(uint[] memory amounts, address[] memory path, address _to) internal virtual {
    for (uint i; i < path.length - 1; i++) {
      (address input, address output) = (path, path);
      (address token0,) = UniswapV2Library.sortTokens(input, output);
      uint amountOut = amounts;
      (uint amount0Out, uint amount1Out) = input == token0 ? (uint(0), amountOut) : (amountOut, uint(0));
      address to = i < path.length - 2 ? UniswapV2Library.pairFor(factory, output, path) : _to;
      IUniswapV2Pair(UniswapV2Library.pairFor(factory, input, output)).swap(
            amount0Out, amount1Out, to, new bytes(0)
      );
    }
}_swap主要做了参数的处理工作,遍历path和amounts得到input,output,amount0Out,amount1Out等参数,传入Pair合约的swap方法中进行实际的swap工作。
注意的几个点:

[*]amountOut等于amounts且需要分配给非input的token作为amount。
[*]swap的时候,path和path的输出token要发给path和path的pair池子,所以当i=path.length-2的时候,i+1为最后一个token,此时发送的对象为_to,也就是输出给指定的用户地址而非Pair合约。
swapExactETHForTokens

swapExactETHForTokens的逻辑基本类似,但是所有用到ETH的地方都必须做WETH的转换,比如一开始就要求 path必须为WETH。然后将ETH转换为WETH后发给第一个交易对,开始swap的流程。
function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
    external
    virtual
    override
    payable
    ensure(deadline)
    returns (uint[] memory amounts)
{
    require(path == WETH, 'UniswapV2Router: INVALID_PATH');
    amounts = UniswapV2Library.getAmountsOut(factory, msg.value, path);
    require(amounts >= amountOutMin, 'UniswapV2Router: INSUFFICIENT_OUTPUT_AMOUNT');
    IWETH(WETH).deposit{value: amounts}();
    assert(IWETH(WETH).transfer(UniswapV2Library.pairFor(factory, path, path), amounts));
    _swap(amounts, path, to);
}总结

在Router中主要实现的是对于参数的处理,无论是流动性的变更还是swap,在用户提供了token和amount之后,路由合约会进行相应的计算,得到满足条件的amount参与到swap流程中,保证了传递给swap方法的参数合法性。同时也要负责多链路swap的有序进行,实现不同流动性池之间的传递。

来源:程序园用户自行投稿发布,如果侵权,请联系站长删除
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!
页: [1]
查看完整版本: UniswapV2Periphery 源码学习