Apache DolphinScheduler-1.3.9源码分析(二)
引言随着大数据的发展,任务调度系统成为了数据处理和管理中至关重要的部分。Apache DolphinScheduler 是一款优秀的开源分布式工作流调度平台,在大数据场景中得到广泛应用。
在本文中,我们将对 Apache DolphinScheduler 1.3.9 版本的源码进行深入分析,主要分析一下Master和Worker的交互设计。
感兴趣的朋友也可以回顾我们上一篇文章:Apache DolphinScheduler-1.3.9源码分析(一)
Worker配置文件
# worker listener port
worker.listen.port=1234
# worker execute thread number to limit task instances in parallel
# worker可并行的任务数限制
worker.exec.threads=100
# worker heartbeat interval, the unit is second
# worker发送心跳间隔
worker.heartbeat.interval=10
# worker max cpuload avg, only higher than the system cpu load average, worker server can be dispatched tasks. default value -1: the number of cpu cores * 2
# worker最大cpu平均负载,只有系统cpu平均负载低于该值,才能执行任务
# 默认值为-1,则最大cpu平均负载=系统cpu核数 * 2
worker.max.cpuload.avg=-1
# worker reserved memory, only lower than system available memory, worker server can be dispatched tasks. default value 0.3, the unit is G
# worker的预留内存,只有当系统可用内存大于等于该值,才能执行任务,单位为GB
# 默认0.3G
worker.reserved.memory=0.3
# default worker groups separated by comma, like 'worker.groups=default,test'
# 工作组名称,多个用,隔开
worker.groups=defaultWorkerServer启动
public void run() {
// init remoting server
NettyServerConfig serverConfig = new NettyServerConfig();
serverConfig.setListenPort(workerConfig.getListenPort());
this.nettyRemotingServer = new NettyRemotingServer(serverConfig);
this.nettyRemotingServer.registerProcessor(CommandType.TASK_EXECUTE_REQUEST, new TaskExecuteProcessor());
this.nettyRemotingServer.registerProcessor(CommandType.TASK_KILL_REQUEST, new TaskKillProcessor());
this.nettyRemotingServer.registerProcessor(CommandType.DB_TASK_ACK, new DBTaskAckProcessor());
this.nettyRemotingServer.registerProcessor(CommandType.DB_TASK_RESPONSE, new DBTaskResponseProcessor());
this.nettyRemotingServer.start();
// worker registry
try {
this.workerRegistry.registry();
this.workerRegistry.getZookeeperRegistryCenter().setStoppable(this);
Set<String> workerZkPaths = this.workerRegistry.getWorkerZkPaths();
this.workerRegistry.getZookeeperRegistryCenter().getRegisterOperator().handleDeadServer(workerZkPaths, ZKNodeType.WORKER, Constants.DELETE_ZK_OP);
} catch (Exception e) {
logger.error(e.getMessage(), e);
throw new RuntimeException(e);
}
// retry report task status
this.retryReportTaskStatusThread.start();
/**
* register hooks, which are called before the process exits
*/
Runtime.getRuntime().addShutdownHook(new Thread(() -> {
if (Stopper.isRunning()) {
close("shutdownHook");
}
}));
}注册四个Command:
[*]TASK_EXECUTE_REQUEST:task执行请求
[*]TASK_KILL_REQUEST:task停止请求
[*]DB_TASK_ACK:Worker接受到Master的调度请求,回应master
[*]DB_TASK_RESPONSE:
[*]注册WorkerServer到Zookeeper,并发送心跳
[*]报告Task执行状态
RetryReportTaskStatusThread
这是一个兜底机制,主要负责定时轮询向Master汇报任务的状态,直到Master回复状态的ACK,避免任务状态丢失;
每隔5分钟,检查一下responceCache中的ACK Cache和Response Cache是否为空,如果不为空则向Master发送ack_command和response command请求。
public void run() {
ResponceCache responceCache = ResponceCache.get();
while (Stopper.isRunning()){
// sleep 5 minutes
ThreadUtils.sleep(RETRY_REPORT_TASK_STATUS_INTERVAL);
try {
if (!responceCache.getAckCache().isEmpty()){
Map<Integer,Command> ackCache =responceCache.getAckCache();
for (Map.Entry<Integer, Command> entry : ackCache.entrySet()){
Integer taskInstanceId = entry.getKey();
Command ackCommand = entry.getValue();
taskCallbackService.sendAck(taskInstanceId,ackCommand);
}
}
if (!responceCache.getResponseCache().isEmpty()){
Map<Integer,Command> responseCache =responceCache.getResponseCache();
for (Map.Entry<Integer, Command> entry : responseCache.entrySet()){
Integer taskInstanceId = entry.getKey();
Command responseCommand = entry.getValue();
taskCallbackService.sendResult(taskInstanceId,responseCommand);
}
}
}catch (Exception e){
logger.warn("retry report task status error", e);
}
}
}Master与Worker的交互设计
Apache DolphinScheduler Master和Worker模块是两个独立的JVM进程,可以部署在不同的服务器上,Master与Worker的通信都是通过Netty实现RPC交互的,一共用到7种处理器。
模块处理器作用mastermasterTaskResponseProcessor处理TaskExecuteResponseCommand消息,将消息添加到TaskResponseService的任务响应队列中mastermasterTaskAckProcessor处理TaskExecuteAckCommand消息,将消息添加到TaskResponseService的任务响应队列中mastermasterTaskKillResponseProcessor处理TaskKillResponseCommand消息,并在日志中打印消息内容workerworkerTaskExecuteProcessor处理TaskExecuteRequestCommand消息,并发送TaskExecuteAckCommand到master,提交任务执行workerworkerTaskKillProcessor处理TaskKillRequestCommand消息,调用kill -9 pid杀死任务对应的进程,并向master发送TaskKillResponseCommand消息workerworkerDBTaskAckProcessor处理DBTaskAckCommand消息,针对执行成功的任务,从ResponseCache中删除workerworkerDBTaskResponseProcessor处理DBTaskResponseCommand消息,针对执行成功的任务,从ResponseCache中删除分发任务如何交互
master#TaskPriorityQueueConsumer
Master任务里有一个TaskPriorityQueueConsumer,会从TaskPriorityQueue里每次取3个Task分发给Worker执行,这里会创建TaskExecuteRequestCommand。
TaskPriorityQueueConsumer#run()
@Overridepublic void run() { List failedDispatchTasks = new ArrayList(); while (Stopper.isRunning()){ try { // 每一批次分发任务数量,master.dispatch.task.num = 3 int fetchTaskNum = masterConfig.getMasterDispatchTaskNumber(); failedDispatchTasks.clear(); for(int i = 0; i < fetchTaskNum; i++){ if(taskPriorityQueue.size()
页:
[1]